PLUTO
init.c File Reference

Relativistic shock-cloud interaction. More...

#include "pluto.h"
Include dependency graph for init.c:

Go to the source code of this file.

Functions

void Init (double *us, double x1, double x2, double x3)
 
void Analysis (const Data *d, Grid *grid)
 
void UserDefBoundary (const Data *d, RBox *box, int side, Grid *grid)
 

Detailed Description

Relativistic shock-cloud interaction.

Sets initial condition for the relativistic shock-cloud interaction problem in 2D or 3D. A high-density spherical cloud with $ \rho = 10 $ is initially located at $ (0.8,0) $ adjacent to a shock wave located at $ x=0 $. The post-shock region ( $ x < 0 $) is at rest with

\[ \begin{array}{lcll} (\rho,\, v_z,\, B_z,\, p) &=& (42.5942,\,0,\, -2.12971,\, 127.9483) & \qquad\mathrm{Ideal}\quad\mathrm{EOS, [MB06]} \\ \noalign{\medskip} (\rho,\, v_z,\, B_z,\, p) &=& (39.5052,\,0,\, 1.9753,\, 129.72386) & \qquad\mathrm{TM}\quad\mathrm{EOS, [Mig12]} \end{array} \]

while the upstream region is characterized by

\[ (\rho,\, v_z,\, B_z,\, p) = (1, \, -\sqrt{0.99}, \,0.5,\, 10^{-3}) \]

This test has no input parameters

The first two configurations employ adaptive mesh refinement.

rmhd_shock_cloud.01.jpg
Density map (in log scale) for configuration #01

References

  • [MB06]: "An HLLC Riemann solver for relativistic flows -- II. Magnetohydrodynamics", Mignone & Bodo MNRAS(2006) 368,1040
  • [Mig12]: "The PLUTO Code for Adaptive Mesh Computations in Astrophysical Fluid dynamics", Mignone et al., ApJS (2012), 198:7
Authors
A. Mignone (migno.nosp@m.ne@p.nosp@m.h.uni.nosp@m.to.i.nosp@m.t)
Date
Aug 31, 2015

Definition in file init.c.

Function Documentation

void Analysis ( const Data d,
Grid grid 
)

Perform runtime data analysis.

Parameters
[in]dthe PLUTO Data structure
[in]gridpointer to array of Grid structures

Compute volume-integrated magnetic pressure, Maxwell and Reynolds stresses. Save them to "averages.dat"

Definition at line 105 of file init.c.

111 {
112 
113 }
void Init ( double *  us,
double  x1,
double  x2,
double  x3 
)

The Init() function can be used to assign initial conditions as as a function of spatial position.

Parameters
[out]va pointer to a vector of primitive variables
[in]x1coordinate point in the 1st dimension
[in]x2coordinate point in the 2nd dimension
[in]x3coordinate point in the 3rdt dimension

The meaning of x1, x2 and x3 depends on the geometry:

\[ \begin{array}{cccl} x_1 & x_2 & x_3 & \mathrm{Geometry} \\ \noalign{\medskip} \hline x & y & z & \mathrm{Cartesian} \\ \noalign{\medskip} R & z & - & \mathrm{cylindrical} \\ \noalign{\medskip} R & \phi & z & \mathrm{polar} \\ \noalign{\medskip} r & \theta & \phi & \mathrm{spherical} \end{array} \]

Variable names are accessed by means of an index v[nv], where nv = RHO is density, nv = PRS is pressure, nv = (VX1, VX2, VX3) are the three components of velocity, and so forth.

Definition at line 44 of file init.c.

51 {
52  double x,y,z,r;
53  double c,s,alpha;
54 
55  #if EOS == IDEAL
56  g_gamma = 4./3.;
57  #endif
58 
59  alpha = 0.0*CONST_PI/4.0;
60 
61  x = x1; y = x2; z = x3;
62 
63  if (x < 0.6){
64 
65  #if EOS == IDEAL
66  us[RHO] = 42.5942;
67  us[PRS] = 127.9483;
68  us[BX3] = -2.12971;
69  #elif EOS == TAUB
70  us[RHO] = 39.5052;
71  us[PRS] = 129.72386;
72  us[BX3] = 1.9753;
73  #endif
74  us[VX1] = 0.0;
75  us[VX2] = 0.0;
76  us[VX3] = 0.0;
77  us[BX1] = 0.0;
78  us[BX2] = 0.0;
79 
80  }else{
81 
82  us[RHO] = 1.0;
83  us[PRS] = 1.e-3;
84  us[VX1] = -sqrt(1.0 - 1.0/100.);
85  us[VX2] = 0.0;
86  us[VX3] = 0.0;
87  us[BX1] = 0.0;
88  us[BX2] = 0.0;
89  us[BX3] = 0.5;
90 
91  }
92 /*
93  #if DIMENSIONS == 3
94  us[BX3] /= sqrt(2.0);
95  us[BX2] = us[BX3];
96  #endif
97 */
98 
99  r = D_EXPAND( (x-0.8)*(x-0.8), + y*y, + z*z);
100  r = sqrt(r);
101  if (r < 0.15) us[RHO] = 10.0;
102 
103 }
static double alpha
Definition: init.c:3
double g_gamma
Definition: globals.h:112
#define VX2
Definition: mod_defs.h:29
#define RHO
Definition: mod_defs.h:19
#define VX1
Definition: mod_defs.h:28
double * x
Definition: structs.h:80
tuple c
Definition: menu.py:375
#define s
#define BX3
Definition: mod_defs.h:27
D_EXPAND(tot/[n]=(double) grid[IDIR].np_int_glob;, tot/[n]=(double) grid[JDIR].np_int_glob;, tot/[n]=(double) grid[KDIR].np_int_glob;)
Definition: analysis.c:27
#define BX1
Definition: mod_defs.h:25
#define VX3
Definition: mod_defs.h:30
#define CONST_PI
.
Definition: pluto.h:269
#define BX2
Definition: mod_defs.h:26

Here is the call graph for this function:

void UserDefBoundary ( const Data d,
RBox box,
int  side,
Grid grid 
)

Assign user-defined boundary conditions.

Parameters
[in,out]dpointer to the PLUTO data structure containing cell-centered primitive quantities (d->Vc) and staggered magnetic fields (d->Vs, when used) to be filled.
[in]boxpointer to a RBox structure containing the lower and upper indices of the ghost zone-centers/nodes or edges at which data values should be assigned.
[in]sidespecifies the boundary side where ghost zones need to be filled. It can assume the following pre-definite values: X1_BEG, X1_END, X2_BEG, X2_END, X3_BEG, X3_END. The special value side == 0 is used to control a region inside the computational domain.
[in]gridpointer to an array of Grid structures.

Assign user-defined boundary conditions in the lower boundary ghost zones. The profile is top-hat:

\[ V_{ij} = \left\{\begin{array}{ll} V_{\rm jet} & \quad\mathrm{for}\quad r_i < 1 \\ \noalign{\medskip} \mathrm{Reflect}(V) & \quad\mathrm{otherwise} \end{array}\right. \]

where $ V_{\rm jet} = (\rho,v,p)_{\rm jet} = (1,M,1/\Gamma)$ and M is the flow Mach number (the unit velocity is the jet sound speed, so $ v = M$).

Assign user-defined boundary conditions:

  • left side (x beg): constant shocked values
  • bottom side (y beg): constant shocked values for x < 1/6 and reflective boundary otherwise.
  • top side (y end): time-dependent boundary: for $ x < x_s(t) = 10 t/\sin\alpha + 1/6 + 1.0/\tan\alpha $ we use fixed (post-shock) values. Unperturbed values otherwise.

Assign user-defined boundary conditions at inner and outer radial boundaries. Reflective conditions are applied except for the azimuthal velocity which is fixed.

Assign user-defined boundary conditions.

Parameters
[in/out]d pointer to the PLUTO data structure containing cell-centered primitive quantities (d->Vc) and staggered magnetic fields (d->Vs, when used) to be filled.
[in]boxpointer to a RBox structure containing the lower and upper indices of the ghost zone-centers/nodes or edges at which data values should be assigned.
[in]sidespecifies on which side boundary conditions need to be assigned. side can assume the following pre-definite values: X1_BEG, X1_END, X2_BEG, X2_END, X3_BEG, X3_END. The special value side == 0 is used to control a region inside the computational domain.
[in]gridpointer to an array of Grid structures.

Set the injection boundary condition at the lower z-boundary (X2-beg must be set to userdef in pluto.ini). For $ R \le 1 $ we set constant input values (given by the GetJetValues() function while for $ R > 1 $ the solution has equatorial symmetry with respect to the z=0 plane. To avoid numerical problems with a "top-hat" discontinuous jump, we smoothly merge the inlet and reflected value using a profile function Profile().

Provide inner radial boundary condition in polar geometry. Zero gradient is prescribed on density, pressure and magnetic field. For the velocity, zero gradient is imposed on v/r (v = vr, vphi).

The user-defined boundary is used to impose stress-free boundary and purely vertical magnetic field at the top and bottom boundaries, as done in Bodo et al. (2012). In addition, constant temperature and hydrostatic balance are imposed. For instance, at the bottom boundary, one has:

\[ \left\{\begin{array}{lcl} \DS \frac{dp}{dz} &=& \rho g_z \\ \noalign{\medskip} p &=& \rho c_s^2 \end{array}\right. \qquad\Longrightarrow\qquad \frac{p_{k+1}-p_k}{\Delta z} = \frac{p_{k} + p_{k+1}}{2c_s^2}g_z \]

where $g_z$ is the value of gravity at the lower boundary. Solving for $p_k$ at the bottom boundary where $k=k_b-1$ gives:

\[ \left\{\begin{array}{lcl} p_k &=& \DS p_{k+1} \frac{1-a}{1+a} \\ \noalign{\medskip} \rho_k &=& \DS \frac{p_k}{c_s^2} \end{array}\right. \qquad\mathrm{where}\qquad a = \frac{\Delta z g_z}{2c_s^2} > 0 \]

where, for simplicity, we keep constant temperature in the ghost zones rather than at the boundary interface (this seems to give a more stable behavior and avoids negative densities). A similar treatment holds at the top boundary.

Assign user-defined boundary conditions. At the inner boundary we use outflow conditions, except for velocity which we reset to zero when there's an inflow

Definition at line 116 of file init.c.

122 {
123  int i, j, k, nv;
124  real x1, x2, x3;
125 
126  if (side == X2_BEG){ /* -- X2_BEG boundary -- */
127  X2_BEG_LOOP(k,j,i){}
128  }
129 
130  if (side == X2_END){ /* -- X2_END boundary -- */
131  X2_END_LOOP(k,j,i){}
132  }
133 }
double real
Definition: pluto.h:488
#define X2_BEG_LOOP(k, j, i)
Definition: macros.h:47
#define X2_END_LOOP(k, j, i)
Definition: macros.h:51
#define X2_END
Boundary region at X2 end.
Definition: pluto.h:149
int j
Definition: analysis.c:2
int k
Definition: analysis.c:2
int i
Definition: analysis.c:2
#define X2_BEG
Boundary region at X2 beg.
Definition: pluto.h:148