TES-based light detectors for the CRESST direct dark matter search

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

(on behalf of the CRESST Collaboration)

Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany

Phonon-light technique

- Simultaneous detection of a phonon signal from a scintillating crystal and a light signal in a separate cryogenic detector allows event-by-event particle identification
- Important technique in dark matter searches to suppress environmental backgrounds
- **Quenching** of the light signal is due to different ionization densities in the scintillating crystal
- Light yield (LY, ratio between light energy and energy in the main absorber) distinguishes
- electron/gamma interactions: LY = 1 by definition
- \triangleright alpha interactions: LY \approx 0.2

Figure 1: Light-yield vs. energy: event-byevent background discrimination between electron recoils (blue band) and nuclear re-

Light channel design

- Scintillating CaWO₄ target crystal \Rightarrow light output 20-30 ph/keV
- Silicon-on-sapphire (SOS) light absorber \Rightarrow sapphire as excellent cryodetector, 1 μm silicon for light absorption
- Absorption efficiency \sim 85% in the relevant wavelength range
- Scintillating/reflecting foil \Rightarrow increasing light collection to \sim 30 %
- Figure 2: CaWO₄ emission (blue), SOS absorption (or-Collected light energy typically 2% of the

- coils (pink band) [1].
- ▷ nuclear recoils: LY \approx 11% (O), 6% (Ca), 4% (W)

ange), foil reflectivity (green) [2] energy measured in the main absorber

J. Rothe

Impact of the light channel on dark matter search

- Figure 3: Bottom: the event shown can not be assigned to a band. Top: superior LD perfomance allows identifying the event as a nuclear recoil.
- Light detector resolution and light collection efficiency determine the width of the light yield-bands
- Overlap at low-energies causes "leakage" of e/γ background into dark matter search region
- ► For low-mass dark matter searches, leakage is unavoidable
- Light detector adds valuable information on origin of backgrounds
- Fully scintillating CRESST-III detector holder: light signal to veto external backgrounds

New developments for CRESST-III

- Figure 4: Left: CRESST-II light detector. Right: CRESST-III light detector.
- matched size to new phonon detectors: 20mm x 20mm x 0.4mm
- detector holding by scintillating sticks: light as veto signal

TES design of the light detector

Figure 5: TES design for the CRESST light detectors. Left: layout of tungsten (grey), aluminum (silver) and gold films [3]. Right: Measured detector response overlayed with two-component thermal/non-thermal model [4].

- Signal generation: photon interaction creates a population of non-thermal phonons
- Calorimetric TES: thermometer relaxation (5-9 ms) slower than non-thermal phonon lifetime (0.3-0.8 ms)
- Stabilized at operating temperatures of 17-23 mK

Resolution within CRESST modules

Standard calibration: 122 keV γ from ⁵⁷Co in the main absorber \Rightarrow electron-equivalent (keV_{ee}) scale for the light detector

Beaker light detectors

- depends on scintillation efficiency of the crystal, light collection of the module and light detector resolution
- most relevant for dark matter search, can be measured from width of the bands in the light yield plot
- ► 1- σ resolution at zero energy: 246 eV_{ee} (TUM-40)
- at higher energies: dominated by photon Poisson fluctuations

Performance as individual detectors

- CRESST-II Phase 2: several LDs equipped with ⁵⁵Fe sources
- ► 5.9/6.5 keV γ (⁵⁵Mn K_{α}/K_{β}) directly deposited \Rightarrow establishes independent energy scale
- > 1σ resolution at zero energy (determined from baseline noise) between 4.1 eV and 6.7 eV achieved
- resolution degrades with higher energy

Figure 6: Light-yield plot of detector TUM-40 [1]

5.5

detector Leon

Calibrated Figure 8: Figure 7: ⁵⁵Mn K_{α}/K_{β} light detector perforlines observed in light standard mances: LD (blue), beaker (orange).

Figure 9: CRESST-module with beaker light detector: holding scheme including glued TES-carrier to complete 4π -veto.

- Parallel line of development: silicon beakers surrounding the main absorber
- Excellent detector properties: baseline noise of 5.8 eV reached in CRESST-II Phase 2
- Enhanced light collection to \sim 80%

Superior rejection of backgrounds from surface contaminations (back-to-back

Figure 10: Polished silicon beaker (height 40mm, diameter 40mm, thickness 0.4mm) milled from single crystal material.

Figure 11: Pulse shape discrimination allows efficient rejection of penetrating external backgrounds and surface contaminations. Left: event population in the phononlight plane before pulse shape cuts. Right: after pulse shape cuts.

(known effect in sapphire [5]): 45 eV at 6 keV

topology)

Early view on CRESST-III performance

- Smaller CaWO₄ crystal, more compact module: Monte Carlo study and prototype measurement suggest total light yield improved to 2.5%
- Smaller light detector: expected 2.7× improved resolution from phonon density and free path
- First CRESST-III data: light detector achieved baseline noise of 80 eV_{ee}
 - \Rightarrow assuming total light yield of the prototype: baseline noise in the range of 2 eV expected
- Further study and direct calibration needed

Figure 12: Monte Carlo simulation of photon propagation and collection in the CRESST-III module

References

[1] Florian Reindl.

Exploring Light Dark Matter With CRESST-II Low-Threshold Detectors. Dissertation, Technische Universität München, München, 2016.

[2] Patrick Huff.

The Detector Parameters Determining the Sensitivity of the CRESST-II Experiment. Dissertation, Technische Universität München, München, 2010.

[3] Anja Tanzke.

Low-Threshold Detectors for Low-Mass Direct Dark Matter Search with CRESST-III. Dissertation, Technische Universität München, München, 2017.

[4] Johannes Rothe.

Achieving Low Thresholds: Cryogenic Detectors for Low-Mass Dark Matter Searches. Master thesis, Ludwig-Maximilians-Universität München, München, 2016.

[5] M. Sisti et al.

Nucl. Instrum. Meth., A466:499-508, 2001.