Multiplexing TES Microcalorimeters in the High-Speed Limit

Photosystem-II protein

Joe Fowler NIST Boulder Labs July 20, 2017

-

University of Colorado

Boulder

MAN

Team and funding agencies

NIST Boulder **Laboratories**

Brad Alpert Jim Beall Dan Becker **Doug Bennett** Ed Denison **Randy Doriese** Lisa Ferreira Joe Fowler **Jiansong Gao** John Gard **Jim Hays-Wehle** Gene Hilton Hannes Hubmayr

Young II Joe Vince Kotsubo Peter I owell **Ben Mates** Kelsey Morgan Galen O'Neil **Christine** Pappas Carl Reintsema Dan Schmidt **Robbie Stevens** Dan Swetz Joel Ullom Abbie Wessels

NASA Goddard Space Flight Center

Joe Adams Simon Bandler Jay Chervenak Rich Kelley

Caroline Kilbourne Scott Porter Steve Smith Nick Wakeham

Stanford Physics Department

Saptarshi Chaudhuri Kent Irwin Dale Li

Jamie Titus

Argonne National Laboratory

Nino Micelli

Daikan Yan

A recent success: X-ray fluorescence metrology

- Studied line shape and exact line energy of 22 fluorescence lines from 4 lanthanide metals.
- Consistent with all *modern* measurements, but made serious improvements in uncertainty on several lines with only legacy measurements.
- Established TES microcals as a tool for x-ray metrology at the sub-eV level.
- 2013 measurement with ~100 TESs.
- 12.8 us samples = 39 kHz bandwidth each.
- 160 chan -> 6.3 MHz total bandwidth.

University of Colorado

Boulder

Future needs: more TESs and higher speed

- All require 1000+ sensors.
- All need peak and fall times below
 200 µs (for LCLS-II, *much* less)
- Need careful control of cross-talk.

Free-electron laser light source

Iniversity of Colorado

Poster PE-67: Dale Li

Neutrino mass by Ho electron-capture

The need for speed

For comparison, TES x-ray pulses from:

- 2013 metrology measurement
- 2017 NASA array for EBIT
- Future array for LCLS-II and similar

Peak times: 400, 180, 20 µs

Simulated data for LCLS-II at 0.5 photons per 10,000 Hz shot

Poster PB-25: Brad Alpert

University of Colorado

Boulder

Outline: fast readout for everyone

- 1. Motivation: more and faster sensors.
- 2. Time-Division Multiplexing: achievements and limits.
- 3. Microwave-SQUID Multiplexing: in rapid development.

NIST/Stanford Time-Division Multiplexing

Boulder

- A time-sharing SQUID-based amplifier.
- Each of several (8+) "columns" reads out several (20-32+) sensors in sequence, then repeats again every ≤ 10 µs.
- TESs are DC-biased; only their read-out circuit is switched on and off.
- Nonlinearity of SQUID amps is mitigated by applying active feedback to SQ1.
- That nulling feedback is the signal.

Poster PB-31: Malcolm Durkin Talk: Kent Irwin

TDM at the last LTD: 1-column performance

MAM

Recent TDM improvements

- Faster digital electronics.
- Wider-bandwidth analog electronics.
- Low-pass of digital switching signals (reduced column-column crosstalk).

MAN

6x32 array of fast detectors (GSFC)

MAN

-

University of Colorado

Boulder

- 256-detector array selected out of a 1024-detector chip.
- Highly uniform performance, apart from 7 lowest TESs.

Raw spectra from 163 active TES detectors

• Each plot column = one readout column. (There are between 23 and 30 active TESs per column, but they all have 32 channels of readout.)

Boulde

- Color code is:
 - Green = good (144)
 - Gray = initially too fast (12)
 - Gold = absorber problem (7 TESs)
 - Fully 88% are good detectors with good readout performance at 6.4 µs sampling period.
- The medians indicated in the top of each frame (3.09, 2.74, 2.70, 2.75, 2.73, 3.00 eV) *include all channels, even gold and gray "bad" ones.*

Distribution of the resolutions at 5.9 keV

- Median resolution is 2.75 eV at 5899 eV.
- 32-channel readout, with
 6.4 µs frame time.
- 143 best TESs are between 2.3 and 3.4 eV.
- Later recovered the 12 gray (too-fast) TESs with small change in tuning.

Combined 143-channel spectrum

Important constraints on bandwidth

- Your MUX technology needs to offer all of:
 - Low noise
 - High sample rate
 - High slew rate (limitation in 6x32 data)
 - Low crosstalk (if high-rate, high-res)
- Together, these requirements dictate the bandwidth per channel.
- (Total system BW) \gg (Per-sensor signal BW) * (# of channels)
 - Metrology: 6.25 MHz
 - 6x32 EBIT: 20 MHz

<u>GHz bandwidth requires a new approach: µMUX</u>

- Each TES is coupled to an rf-SQUID at the bottom of a resonant LC circuit.
- The TES current alters *L* and thereby modulates the tone resonating there.

One use of GHz bandwidth: 128 TES channels

- 89 TESs, microwave-SQUID multiplexing. ¹⁵³Gd gamma-ray source.
- Resolution: 50 eV FWHM at 97 keV.

Or use GHz bandwidth for speed

- 800,000 samp/sec readout demonstrated with microwave SQUID multiplexing.
 - 2013 2017 NASA 2019 needs LCLS-II sim 12 10 Pulse height (arb) 8 6 4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Time (ms) 2 0 100 200 -100Ö 300 400 Time (µs)

MAN

• 20 µs pulse peak time.

University of Colorado Boulder

5

Fast readout used for high resolution

- Source: Mg Ka fluorescence.
- TES detector: a leading LCLS-II candidate design.
- Should be able to reach 1.0–1.1 eV (better at target energies 200-800 eV).

Pote d

What's next: 2 GHz bandwidth

A µMUX test system for 2 GHz bandwidth.

Conclusions

- TDM technology is reaching its full potential.
- For much faster and/or more numerous sensors, we need much wider system bandwidth.
- Demonstrations have been made of 100+ readout channels AND 20 µs (fast) detectors.
- Work is underway to move from these demonstrations to real spectrometers.

Arrival-time effects

- Great result, but we can see that we're already approaching this system's speed limits:
- Some TES rising edges too fast. Fixed with re-tuning of the SQUIDs, but it's a problem that's not going away as long as detectors are this fast.
- Here are 3 examples from the 163 active TESs:

