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The Calibration and Linearity Problem
TES microcalorimeters are not strictly linear detectors: pulse sizes are not propor-
tional to photon energy. Any well-calibrated estimator of energy must be nonlinear
in the data. Can we somehow create a nonlinear estimator that nevertheless has
the statistical advantages found in the linear procedure of optimal filtering?

Linear Estimators are NOT Linear in E
Various linear estimators of pulse size are possible, including the statistically optimal
one, known as Optimal Filtering. But when pulse sizes are not proportional to
energy, and when pulse shapes change with energy, these linear estimators of pulse
size make nonlinear estimators of energy.

Linear TES pulse-size estimators show reduced response at high energies.

A nonlinear transformation from (linear) pulse size to energy—a “calibration curve”
is needed. Absent further information about this curve, we must make smoothness
assumptions. One that has worked well for us is to assume minimum curvature in
the PH vs E domain, but we know this is a rather dubious principle to rely on.

Joule Energy Deficit ∝ Total Energy
A surprising and very useful fact (see talk by Christine Pappas, July 18): the TES
signal represents a time-integrated deficit in Joule energy, and this Joule energy is
proportional to the deposited x-ray energy, over a broad range of energies and TES
bias and of thermal conditions.
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Let I (t) and R(t) be the time-varying TES current and resistance. Let Ibase be the
baseline (quiescent) TES current and Ibias be the total current into the TES plus
its shunt resistor. We define the positive-going signal s(t) ≡ Ibase − I (t). Then
the Joule-energy deficit can be written:

EJoule =

∫
dt R(t)[Ibase − I (t)]2

= Rshunt(Ibias − 2Ibase)

∫
dt s(t) + Rshunt

∫
dt s2(t)

The Joule-energy integral is very nearly proportional to energy.

The Joule energy accounts for approximately 75% to 90% of the total deposited
photon energy, depending on the exact TES design and bias voltage (the balance
being dissipated by thermal conduction down the TES “legs”).

Näıve Integrals of Noisy Signal are Noisy
We should not estimate this time-integral EJoule directly on noisy pulse records; this
would abandon all the advantages that optimal filtering techniques achieve by use
of an appropriate noise-weighting of the data.

Imagine a simplified problem, to see why. Suppose we have measured the quantities
A and B with noise levels n and N , respectively:

A is like the optimal filtering result: very low noise, but not linear in energy E .

B is a linearizing correction, but a noisy one. It is chosen such that...

(A+B) is an unbiased estimator of E , but also noisy because of the noise in B .

If we use the direct integrals of s(t) and s2(t) to compute the Joule energy from
noisy data, it’s like the use of A+B to estimate energy in the cartoon above: it
would be unbiased but noisy. What can we use in place of these integrals? More
generally, how can we construct a nonlinear AND statistically optimal estimator?
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Pulse-Height Optimal Nonlinear Estimates
We assume that pulses would lie along a 1-dimensional manifold (a curve) in higher-
dimensional space, if not for noise. The curve can be parameterized by any quantity
that signifies pulse size. (Ideally, it will be pulse energy, or something close.)
These steps are relevant to any nonlinear analysis, not only an E-Joule estimation.

Step 1: Approximate Pulses in a
Low-Dimensional Subspace

The pulse records of length 103–104 can be dramatically simplified by representing
them as a sum of a few components. This amounts to projecting the record into a
low-dimensional subspace. Here, we use 6 components: 2 are a constant baseline
level and a (leading-order) arrival-time correction; the 4 of real interest are C0...C3.
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Pulse model, several energies
8639 eV (Zn K )
8048 eV (Cu K )
7478 eV (Ni K )
6930 eV (Co K )
6404 eV (Fe K )
5899 eV (Mn K )
5415 eV (Cr K )
4511 eV (Ti K )
1740 eV (Si K )

Left: pulse records are modeled as a linear combination of the 6 com-
ponents shown here: 2 are “nuisance terms;” only the other 4 are used
in later analysis. Right: Though important, the variation in pulse shape
with energy is not readily visible from this set of typical pulses.

In this version, we choose component C0 as the average pulse shape over a broad
energy range. The other components are the 3 leading singular vectors of the
residual after fitting this simpler 3-component linear model. (Other choices are
possible, such as a basis consisting of decaying exponentials of varying decay rates.)
Projection into this subspace must be done with appropriate noise-weighting.

Step 2: Find E-Joule’s Two Weights
The formulas at left show that we know how to compute the weights for the
time-integral of the first and second powers of the signal s(t), which are needed to
estimate E-Joule. However, they depend on electrical parameters that are measured
only to 1%–3% uncertainty, at best. It is better to use data to estimate the weights
α and β. This requires a one-time use of external energy information, such as the
identification of certain fluorescence lines.

We can see that the correct value of β makes the estimated E-Joule proportional
to photon energy. Proportionality also becomes equality with the best choice of α.

Step 3: Find the Approximate Curve
The critical noise-reduction step requires that we find and parameterize the 1-D
curve within 4-D space that represents “allowed values” of C0...C3:

1. Label each pulse by its rms deviation from the baseline. This value is simple to
compute, and nearly as low in noise as an optimally filtered pulse height.

2. Find 4 approximating splines for C0(rms), C1(rms), C2(rms), and C3(rms).

3. This gives a model for pulse shape at any possible rms value, from which we
can estimate the Joule-energy integral.

Data records (green) and spline-based model (black) for each component vs
pulse rms magnitude. This same 1-D curve embedded in 4-D space can now be
re-parameterized by estimated Joule energy.

Step 4: Find the “Nearest” Point on the
Curve for Each Pulse Record

To do avoid the problems shown in the “A+B” cartoon at left, we must ensure that
we aren’t finding components C0...C3 independently for each pulse. Instead, we
have to find the point on the 1-dimensional model curve that best agrees with the
data. That is, we need the (Joule-energy parameter of the) point that minimizes
the Mahalanobis (signal-to-noise) distance between the noisy point and the model.
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A noise error ellipse helps us visualize the 'nearest' point on the curve
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Further Information
In http://arxiv.org/abs/1611.07856, we begin to address nonlinear pulse analysis.

Application to Real Measurements
We apply this method to data taken with a 3× 8 array of TESs. The x-ray source
was a fluorescence target illuminated by a broad-band commercial tube source. The
target contains the 3d transition metals Ti, Cr, Mn, Fe, Co, Ni, Cu, and Zn. Their
Kα and Kβ emission lines span the range 4.5 keV to 9.6 keV.

Resolution: Close to Optimal Filtering
The details of this technique are still being developed, but already we find that most
detectors are showing an energy resolution nearly as good as the value achieved
through the standard optimal filtering technique.
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The Kα lines of Mn, Co, and Cu for one TES, analyzed with standard optimal
filtering (lower) and the Joule-energy integral (above).
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For the 15 TESs on which this method has been tried, the energy resolutions
from the E-Joule technique are generally within 0.3 eV of the values found using
a more traditional, optimal-filter analysis.

E-Joule Estimator is Accurate to ∼ 5 eV
The Joule-energy-based estimator of photon energies required us to learn only two
parameters from data: the weights to give to the time-integrals of the signal current
and of its square.

How far off is this energy estimator from the “true answer,” as determined through
the usual painstaking multi-point calibration curve? And for comparison, how ac-
curate would the usual optimal-filtering result be if we permitted it to be calibrated
with only two free parameters?

The energy error from 2-point calibrations, for both analyses. Naturally, both
would be adjusted with nonlinear “calibration curves,” but the Joule-energy
analysis would require such a curve to do much less work.

Above are data calibrated with 2 free parameters per channel. For the optimal-
filtered data (red, orange, yellow), we have anchored the calibration at the Kα
energies of Cr and Zn (5.4 and 8.6 keV). The different colors reflect different choices
of what is assumed to be linear in the measured pulse height: the energy, the gain,
the inverse of the gain, etc. At best (gain linear in pulse height), the 2-point
calibration error is off by 50 eV for the optimal filtered data over large parts of the
range of interest. By contrast, the Joule energy estimator is within 5 eV over the
entire range of 4 to 9 keV, an order of magnitude improvement.

Future improvements and plans
We have developed an approach to the optimal nonlinear analysis of TES mi-
crocalorimeter pulses and applied it to the problem of making low-noise estimates
of the Joule-energy deficit in a pulse. The steps include:

1. Choose an appropriate low-dimensional basis in which to approximate pulse
records.

2. Project pulses into this basis with appropriate noise-weighting.

3. Find the 1-dimensional manifold (curve) in this basis that represents the set of
all “good pulses.”

4. For each measured pulse, find the (noise-weighted) nearest point on the curve
of good pulses, and use its “size” as the size of the chosen pulse.

These steps all present challenges and chances for future improvements:

1. We have used the SVD as the “appropriate basis,” but the SVD is susceptible
to capturing the noise in the training data. Can a better basis be found that is
intrinsically smooth, and well-matched to the typical timescales of pulses?

2. Projection is straightforward but requires a model of the noise correlation
structure.

3. Finding the manifold of “good pulses” is probably the biggest challenge. In full
generality, it is an open research topic in machine learning! Can we restrict it
to a sufficiently narrow problem?

4. Computation of the (noise-weighted) nearest point on the curve needs to be
made faster, or else this technique will not be competitive with optimal filtering
for speed.

Conclusions
We have attempted a fully nonlinear analysis of TES microcalorimeter pulses in
order to achieve both highly accurate calibration and high signal-to-noise simulta-
neously. Such an analysis has not previously been made on TES data, as far as we
are aware.
We expect that with further refinements, this nonlinear but statistically optimal
approach can be very valuable in nearly any x-ray spectrometer measurement, par-
ticularly one in which calibration anchor points are few in number or low in intensity.
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