Developing Cryotron Switches for TES Array Multiplexing

Joel Weber, Peter Lowell, Malcolm Durkin, John Mates, Carl Reintsema, Douglas Bennett, Daniel Schmidt, Daniel Swetz, Gene Hilton, Joel Ullom

National Institute of Standards and Technology, Boulder, Colorado USA

Joel.Weber@nist.gov

LTD17 2017

Limitations in Both Current and Future Applications

- Next-generation TES arrays will require 10⁵ to 10⁶ pixels
- Improve imaging resolution
- Reduce measurement time
- Expand source capability
- Improvements on existing

Solution: The Cryotron

Control Current Actuation

- Maximum supercurrent I_{sig} versus control line current I_{con} at 70 mK
- Cryotron exhibits low-field regime with linear slope
- Meissner state
- High-field regime with long decaying tail

Ongoing Speed Testing

multiplexing strategies are needed

- Reduce # of wirebond pads
- Minimize power dissipation
- Reduce # of leads to mK stage

Binary Addressing

- # of pixels = $2^{(# of bond pads)}$
 - Significantly reduce bond pad area for large arrays
 - Compatible with time division multiplexing (TDM) & Φ-CDM

Single Cryotron

Buck, Dudley A. "The Cryotron-a superconductive computer component." Proceedings of the IRE 44, no. 4 (1956): 482-493.

- Proposed by Dudley Buck in 1950's
- Superconducting switch
 - Control line creates a magnetic field
- Signal line switches from superconducting to normal

Initial Cryotron Design

Lowell, P. J., et al. "A thin-film cryotron suitable for use as an ultra-low-temperature switch." Applied Physics Letters 109 (2016): 142601.

- Presence of vortices
- Required magnetic field is order of magnitude larger than predicted
- Non-uniform magnetic field
- Thin-film effects in AlMn

Switching Speed

- Cryotron in parallel circuit with SQUID
- Current is shunted to input coil
- Time constant $\tau \sim 30$ ns
- Measurement restricted by

- Implement dipole gradiometer
 - Minimize sensitivity to external magnetic fields
- Optimize gate design
 - Increase I_{signal}/ decrease I_{control}
 - Increase open state resistance
- Incorporate shunt resistor on chip
 - Reduce circuit inductance and "ringing" during switching
- Microwave SQUID readout

Requires in-plane switching

Current Steered-CDM

Irwin, K. D., et al. "Advanced code-division multiplexers for superconducting detector arrays." Journal of Low Temperature Physics 167.5-6 (2012): 588-594.

- Current steered code division multiplexing (I-CDM)
- No power dissipation in shunts

- Demonstrated with AlMn gate
- Transformer used to minimize control line current
 - 20-turn primary coil
 - Secondary coil in close proximity to signal line
- PECVD oxide used as insulator between Nb/AlMn layers

Cryotron Switching Field

readout electronics

- Switching speed < 200 ns
- Not limited by cryotron

Increasing Signal Line I_c and R

4-probe measurements of AlMn signal traces Critical current (I_c) and normal resistance (R)

Sensitive to tens of nanoseconds switching speed

Current Steering: Single-Pole, **Double-Throw**

- Ongoing work to demonstrate single-pole, double-throw switch
- Two cryotrons in parallel
- Current is steered to readout microwave SQUIDS
- Future applications

- Can integrate into focal plane
- Bolometers: long wavelengths arrays have room between pixels
- Calorimeters: overhanging absorbers demonstrated
- Issues to navigate
 - **TES bias variation**
 - Cross-talk
- **Requires in-plane switching**

Please see Malcolm Durkin's poster (PB-31)

- Maximum perpendicular magnetic field: $B_{\perp} = \frac{\mu_0 I_{con}}{8\pi d}$ Requires T_c of control line >> T_c of gate
- of AlMn can be tuned
- Simple model assumes current travels at edges of control line

Acknowledgements

This work is supported by a funding grant from the NASA ARPA program.

vs. trace geometry

Trace Width (μm)	2	2	6	6
# of Traces	1	6	1	2
Total Width (μm)	2	12	6	12
Normal Resistance (Ω)	113	20	30	15
Average Ic (µA)	15	313	199	290
I_c Standard Dev. (μ A)	1	42	14	32

- Binary addressing for TDM
- Coded readout in I-CDM
- Superconducting logic components

Conclusions and Future Work

• Cryotron demonstrated with switching speeds faster than 200 ns • Microfabrication compatible with calorimeter and bolometer arrays Pathway to reduce bond pad requirements for large arrays

— 5 μm

Continued Improvement

- Signal line material and geometry
- Reduce gate insulating thickness
- Minimize readout inductance
- Measure switching speed limit
- Demonstrate current-steering
- Implement binary addressing