Thermal conductance and high frequency properties of cryogenic normal or superconucting semi-rigid coaxial cables in a range of 1 and 8 K

Akihiro Kushino (Kurume University, Japan),Soichi Kasai (COAX.CO.LTD., Japan) Ż 久留米大学 Masahiro Ukibe (AIST, Japan), Masataka Ohkubo (AIST, JAPAN)

COAX CO., LTD.

PB-26

The semi-rigid cable is a kind of coaxial cable with seamless outer electrical conductor shielding center conductor through dielectric. We have developed some types of thin semi-rigid coaxial cables for low temperature experiments, and report performances of ϕ 0.86 mm samples.

- · low thermal conductance and moderate attenuation by normal metals with relatively low cost
- · low thermal conductance and quite small attenuation employing superconductors

SUS (Ag) -SUS

Nb - Nb

NhTi – Nh

NbTi - CuNi

Samples for evaluation

brass

silver (3µm thickness) plating SUS304

Nb

Cuter conductor

outer diameter: 0.86mm

BeCu

brass

CuNi

SUS304

CuNi

SUS304

Nb

Sample name Center conductor • outer conductor as annealed drawing with outer diameter: 0.20mm (center - outer) dies & lubricant oil BeCu - BeCu BeCu (beryllium- copper) 0 brass- brass dielectric tubing (PTFE: polytetrafluoroethylene in this work) CuNi - CuNi CuNi (cupro-nickel) aging to release SUS - SUS SUS304 (stainless-steel) stress in PTFE silver (3µm thickness) plating CuN CuNi (Ag) - CuN

thin wire for center conductor

Semi-rigid coaxial cables -preparation-

*silver plating on normal center conductor when reduction of attenuation is needed

Refrigerator for cable evaluation

NbTi (niobium-titanium) NbTi NbTi CuNi

BeCu: C17200, brass: C2600, CuNi: C7150, NbTi: Nb-47wt%Ti

We manufactured and evaluated various kinds of semi-rigid coaxial cables with ϕ 0.86mm.

• Most cables exhibited G ~T^{1.1~1.5} behavior in thermal conductance as expected. G for superconducting Nb coaxial showed steeper temperature dependence than others, and was small compared to literature, which were considered to be from deformation drawing process and impurity in Nb.

• Superconducting coaxial cables have extremely small attenuation property below Tc because of vanishment of electrical resistivity, which is advantageous compared to normal conducting ones in terms of low loss.

References

Mitsuda, K., et al., J., Low Temp. Phys., **167**, 795(2012), Tanaka, K., et al., Physica C, **469**, 881(2009), Tortello, M., et al., Rev. Sci. Instrum., **87**, 063906(2016), Yates, S.J.C., et al., Appl. Phys. Lett., **95**, 042504(2009), Kushino, A., et al., J. Low Temp. Phys., **151**, 650(2008), Smith, E., et al., Cryogenics, **52**, 461(2012), Tancredi, G., et al., Rev. Sci. Instrum. **85**, 026104(2014), Kushino, A., et al., J. Cryogenics, **45**, 637(2005), Kushino, A., et al., J. Supercond, Nov. Magn., **26**, 2085(2013), Kushino, A., et al., J. Supercond, Nov. Magn., **28**, 715(2015), Olson, J.R., Cryogenics, **33**, 729(1993)

