

# Parallel plate microwave kinetic inductance detectors

**Grégoire Coiffard**, Ben Mazin, Paul Szypryt, Gerhard Ulbricht (now in Dublin), Miguel Daal and Nicholas Zobrist

17th International Workshop on Low Temperature Detectors July 17th – 21th 2017, Kurume (Japan)





Classical LEKID design

#### High meandered inductance



Small interdigitated capacitance

 $\rm f_0$  dominated by L

$$f_0 \propto \frac{1}{\sqrt{LC}}$$



 $f_0 \propto \frac{1}{\sqrt{LC}}$ 

#### Classical LEKID design

#### High meandered inductance



Small interdigitated capacitance

 $f_{\rm 0}$  dominated by L

Parallel plate design



Major change = two large parallel plate capacitors and small square inductance

 $\rm f_0$  dominated by C









- Maximize the readout power before nonlinear effects thanks to the low current density in the wide inductor (30umx30um)
- Improvement in signal-to-noise ratio due to the saturation of TLS (drive at high power)
- Inductor geometrically more uniform than a classical meandered inductor → increase energy resolution



$$S_{TLS}(\nu) = \kappa(\nu, \omega, T) \times \frac{\int_{V_{TLS}} \left| \vec{E}(\vec{r}) \right|^3 d^3 \vec{r}}{4 \left( \int_{V} \left| \mathcal{E}(\vec{r}) \vec{E}(\vec{r}) \right|^2 d^3 \vec{r} \right)^2}$$





For a parallel plate capacitor:  $V_{TLS} = V$ 

$$S_{TLS} \propto \frac{E^3 V}{4\varepsilon^2 E^4 V^2} \propto \frac{1}{\varepsilon^2 E V}$$

Lower TLS noise by:

- Using a high  $\epsilon$  material
- Maximizing the electric field in the capacitor (driving the MKID at high power)
- Making the volume of the capacitor as large as possible



## EM simulations

- Resonant frequencies between 4-8GHz
- Pixel pitch ~ 150umx150um
- Use PtSi L<sub>kin</sub> ~ 10pH/sq

$$f_0 \propto \frac{1}{\sqrt{LC}}$$
  $C \propto \frac{\epsilon A}{t}$ 

Dielectric :  $Al_2O_3 \epsilon = 10 \rightarrow 10 \text{ nm}$ 

Resonances positions mainly depends on the thickness of the  $Al_2O_3$  layer  $\rightarrow$  Has to be very uniform to avoid collisions





#### **EM** simulations







Sputtering of Pt and Si + annealing at 300C = 55nm thick PtSi film  $\rightarrow$  Patterning of the inductor, the coupling tie and the first side of the parallel plate capacitor





Sputtering of Pt and Si + annealing at 300C = 55nm thick PtSi film  $\rightarrow$  Patterning of the inductor, the coupling tie and the first side of the parallel plate capacitor



Atomic layer deposition of 10 nm of  $Al_2O_3$  over the entire wafer (thickness uniformity of 98% over a 4inch wafer)





Sputtering of Pt and Si + annealing at 300C = 55nm thick PtSi film  $\rightarrow$  Patterning of the inductor, the coupling tie and the first side of the parallel plate capacitor



Atomic layer deposition of 10 nm of  $Al_2O_3$  over the entire wafer (thickness uniformity of 98% over a 4inch wafer)



Sputtering of 80 nm of Nb  $\rightarrow$  CPW feedline and second side of the capacitor





(color added for clarity  $- AI_2O_3$  not shown)



#### Characterization



#### Parallel plate MKIDs resonate

# S21 Log Hag 500.0md#/ Ref 2.000d# 4.000 51.000 2.000 2.000 2.000 2.000 2.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Test device:

- 2 feedlines (different inductor dimensions)
- 18 resonators, 3x6 centered on 4 GHz, 6 GHz and 8 GHz

- Resonances located around their design frequencies
- 13 resonances out of 18 were identified
- Few dB deep, best resonances Qi  $\approx$  35 000 40 000



#### Characterization



Parallel plate microwave kinetic inductance detectors, submitted to Applied Physics Letters last week



- Fabricated working parallel plate resonators
- Higher readout power (a factor of 4) before nonlinearity compared to classical LEKID geometry ≈ -92dBm
- Work on dielectric loss to reduce the noise, improve Q<sub>i</sub> and increase saturation power



- Fabricated working parallel plate resonators
- Higher readout power (a factor of 4) before nonlinearity compared to classical LEKID geometry ≈ -92dBm
- Work on dielectric loss to reduce the noise, improve Q<sub>i</sub> and increase saturation power

More tests are being done with alternative dielectric materials (e.g.  $HfO_2$ ,  $\epsilon = 25$ )

Our process requires a backside illumination : test on double side polished wafer / mushroom absorber on top of the inductor

An amplitude readout approach can be used if the phase noise remains too high in these devices