

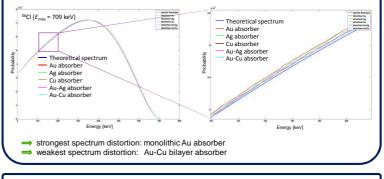
SQUID white noise level 0.35 $\mu\Phi_0/\sqrt{Hz}$; SQUID 1/f noise level @ 1 Hz 2.6 $\mu\Phi_0/\sqrt{Hz}$; signal decay time 1 ms; erbium concentration 310 ppm; sensor thickness 3 μ m

detector absorber heat capacity		XS	S	M	L	XL
		8 pJ/K	28 pJ/K	110 pJ/K	400 pJ/K	1.70 nJ/K
	type	X1	X1	X1	XS	S
	input inductance	2 nH	2 nH	2 nH	27 nH	65 nH
linewidth of pickup coil		2.5 µm	5 µm	5 µm	5 µm	5 µm
pitch of pickup coil		5 µm	10 µm	10 µm	10 µm	10 µm
meander /sensor area (square shape)		(249 µm) ²	(335 mm) ²	(538 µm) ²	(1427 µm) ²	(2663 µm) ²
meander inductance (single meander)		3.4 nH	3.1 nH	8.0 nH	56 nH	196 nH
expected flux coupling		3.8%	4.0 %	2.6%	0.8 %	0.5 %
optimum field current		38.2 mA	67.8 mA	75.7 mA	63.3 mA	67.1 mA
expected energy resolution		5.17 eV	9.46 eV	19.1 eV	37.5 eV	74.4 eV
expected signal size		23.2 mΦ ₀ /keV	12.9 mΦ ₀ /keV	6.41 mΦ ₀ /keV	2.97 m4o/keV	1.61 mΦ ₀ /keV
sensor heat capacity		7.57 pJ/K	17.9 pJ/K	50.6 pJ/K	308 pJ/K	1.17 nJ/K

As examples, the smallest and the largest sensor designs, corresponding to absorber heat capacities of 8 pJ/K @ 20 mK and 1,7 nJ/K @ 20 mK, respectively. The red octogons are the meandering pickup coils (meander lines invisible in this scale), the orange octogons the Au:Er sensor layers. Dimensions are in micrometers.

Absorber heat capacity as a function of electron stopping power

A higher Z material offers a higher absorption probability for the photons


→ high Z advantageous

➡ low Z advantageous

➡ high Z advantageous

 Composite absorber with an inner layer of low Z material and an outer layer of high Z material may be advantageous high Z

Monte Carlo simulations of monolithic Au, Ag, Cu and Au-Ag, Au-Cu bilayer absorbers:

Acknowledgements: This work was performed as part of the EMPIR Project 15SIB10 MetroBeta. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.