Measuring the neutrino mass is one of the most compelling issues in particle physics. HOLMES is an experiment funded by the European Research Council for a direct measurement of neutrino mass. HOLMES will perform a precise measurement of the endpoint of the Electron Capture decay spectrum of 163Ho in order to extract information on neutrino mass with a sensitivity as low as 1 eV.

In its final configuration, HOLMES will deploy a 1000 pixel array of low temperature microcalorimeters: each calorimeter consists of an absorber, where the Ho atoms will be implanted, coupled to a Transition Edge Sensor thermometer. The detectors will be kept at the working temperature of ~50 mK using a dilution refrigerator. In order to gather the required 3×10^{11} events in a three year long data taking with a pile up fraction as low as 10^{-3}, detectors must fulfill rather high speed and resolution requirements, i.e. 20 μs rise time (10-90) and ~1 eV resolution.

The TES average response to a 2.6 keV energy deposition. The target 20 μs 10-90 rise time has been reached (10 μs τ). Changing the working point allows the TES to operate with even faster rise time, as long as the slew rate is below 0.5 Φ/sample.

Next detector steps:
- Production and test of the final HOLMES array
- Test on first implanted detectors
- 16 x 4 detector array with implanted 163Ho for short calorimetric measurement of EC spectrum

High performance detectors for HOLMES: Transition Edge Sensors

Mo/Cu Transition Edge Sensors coupled to Gold absorbers where 163Ho will be implanted

Production and R&D for detectors optimization: NIST, Boulder-Colorado USA

Implantation: Genova

Test and measurement: Milano Bicocca

With our first ROACH 2 board we can now sample up to 32 channels at 500 kHz.

First pulses from multiplexed TES

With the 550 MHz ADC bandwidth of the ROACH2:
- 500 MHz effective pulse sampling
- 14 MHz resonance spacing
- 2 MHz resonance width
- 2 Φ, SQUID oscillation/ramp

33 multiplexable channels per ROACH 2 board

X ray spectra acquired with TES not specifically designed for HOLMES to test the ROACH 2 multiplexed readout