Status of the HOLMES experiment to directly measure the electron neutrino mass

Angelo Nucciotti on behalf of the HOLMES collaboration

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

Assessing the neutrino mass

A. Nucciotti, Adv. High Energy Physics, 2016, 915304

Electron capture calorimetric experiments / 1

¹⁶³Ho + $e^- \rightarrow {}^{163}$ Dy* + ν_e

electron capture from shell ≥ M1

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- Q = 2.8 keV (measured with Penning trap)
 - end-point rate and v mass sensitivity depend on $Q E_{M1}$
- $\tau_{\frac{1}{2}} \approx 4570$ years $\rightarrow 2 \times 10^{11}$ ¹⁶³Ho nuclei $\leftrightarrow 1$ Bq

Electron capture calorimetric experiments / 2

- calorimetric measurement ↔ detector speed is critical
- complex pile-up spectrum

goal

- direct neutrino mass measurement: m, statistical sensitivity around 1 eV
- prove technique potential and scalability:
 - assess EC spectral shape
 - assess systematic errors

baseline

- TES microcalorimeters
 with implanted ¹⁶³Ho
 - ► 6.5×10¹³ nuclei per pixel
 - A_{EC} = 300 c/s/det
 - ► $\Delta E \approx 1 \text{ eV}$ and $\tau_R \approx 1 \mu s$
- 1000 channel array
 - 6.5×10^{16 163}Ho nuclei
 → ≈18 µg
 - 3×10¹³ events in 3 years

5 years project started on February 1st 2014

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112 http://artico.mib.infn.it/holmes

A. Nucciotti, LTD-17, Kurume, Japan, July 2017

erc

5

Montecarlo simulations: ¹⁶³Ho sensitivity potential

A. Nucciotti, Eur. Phys. J. C (2014) 74:3161

A. Nucciotti, LTD-17, Kurume, Japan, July 2017

6

Montecarlo simulations: low energy background

- environmental γ radiation
- γ , X and β from close surroundings
- cosmic rays

- **HOLMES** target for $A_{FC} = 300$ Bq $bkg < \approx 0.1 \, c/eV/day/det$
- GEANT4 simulation for CR at sea level (only **muons**)
- ▷ Au pixel 200×200×2 μ m³ → *bkg* ≈ 5×10⁻⁵ c/eV/day/det (0 4 keV)

MIBETA experiment: $300 \times 300 \times 150 \ \mu m^3$ AgReO₄ crystals at sea level $bkg(2-5keV) \approx 1.5 \times 10^{-4} c/eV/day/det$

- internal radionuclides
 - ▷ ^{166m}Ho (β^- , $\tau_{\frac{1}{16}}$ = 1200 y, produced along with ¹⁶³Ho)
 - Au pixel 200×200×2 μm³

GEANT4 simulation → bkg ≈ 0.5 c/eV/day/det/Bq(^{166m}Ho)

▷ $A(^{163}Ho) = 300Bq/det (\leftrightarrow \approx 6.5 \times 10^{13} \text{ nuclei/det})$

 $bkg(^{166m}Ho) < 0.1 c/eV/day/det \rightarrow A(^{163}Ho)/A(^{166m}Ho) > 1500$

 $\rightarrow N(^{163}\text{Ho})/N(^{166m}\text{Ho}) > 6000$

¹⁶³Ho production by neutron activation

- ¹⁶²Er irradiation at ILL nuclear reactor (Grenoble, France)
- ▶ thermal neutron flux at ILL: 1.3×10¹⁵ n/cm²/s
- ► **burn up** ¹⁶³Ho(n, γ)¹⁶⁴Ho: $\sigma_{burn-up} \approx 200b$ (preliminary result from **PSI** analysis)
- ► ¹⁶⁵Ho(n, γ) (mostly from ¹⁶⁴Er(n, γ)) → ^{166m}Ho (β , $\tau_{\frac{1}{2}}$ =1200y) → A(¹⁶³Ho)/A(^{166m}Ho)=100~1000
- chemical pre-purification and post-separation at PSI (Villigen, CH)

■ HOLMES needs ≈ 200 MBq of ¹⁶³Ho

with reasonable assumptions on the (unknown) global embedding process efficiency...

HOLMES source production

- enriched Er₂O₃ samples* irradiated at ILL and pre-/post-processed at PSI
 - ► 25 mg irradiated for 55 days (2014) \rightarrow A(¹⁶³Ho) \approx 5 MBq (A(^{166m}Ho) \approx 10kBq)
 - ► 150 mg irradiated for 50 days (2015) \rightarrow **A(**¹⁶³**Ho)** \approx **38 MBq (A**(^{166m}**Ho**) \approx **37**kBq)
- Ho radiochemical separation with ion-exchange resins in hot-cell at PSI
 - ► efficiency ≥79% (preliminary)
- **540 mg of 25% enriched Er₂O₃** irradiated 50 days at **ILL** early in 2017
 - ► $A(^{163}Ho)_{theo} \approx 130 \text{ MBq}$ (enough for R&D and 500 pixels) ($A(^{166m}Ho) \approx 180 \text{kBq}$)

** delivery planned for end of 2017

A. Nucciotti, LTD-17, Kurume, Japan, July 2017

ົ 10

HOLMES ion implantation system testing

sputter target -

Ion source sputter target production / 1

- metallic holmium sputter target for implanter ion source
- enriched $Er_2O_3 \rightarrow Ho_2O_3$
- thermoreduction/distillation in furnace
 - ► $Ho_2O_3+2Y(met) \rightarrow 2Ho(met)+Y_2O_3$ at $T>1600^{\circ}C$
- new furnace set-up in 2016
- work in progress to
 - ► optimize the process
 - ► measure efficiency (≈70%, preliminary)

see G. Gallucci PE-28

<image>

Ion source sputter target production / 2

- metallic holmium sputter target for implanter ion source
 - ► work is in progress to produce the sputter target
 - ► sintering Ho with other metals

HOLMES array read-out: rf-SQUID µwave mux

HOLMES µwave multiplexed TES read-out

• chip **µMUX17A**

- 33 resonances in 500 MHz
 - ▶ width 2 MHz
 - separation 14 MHz
- squid noise $< \approx 2 \mu \Phi_0 / \sqrt{Hz}$

HOLMES DAQ: Software Defined Radio

multiplexing factor $n_{\tau ES}$ f_{BW} required bandwidth per channel $(f_{BW} \propto 1/\tau_{rise}) \rightarrow n_{\tau ES} \approx \frac{f_{ADC}}{10 f_{BW}}$

HOLMES detector design

design mostly driven by **read-out bandwith** requirements

TES microwave multiplexing with rf-SQUID ramp modulation + Software Defined Radio (SDR)

 $\int \frac{1}{2} \operatorname{SDR} \operatorname{ADC} f_{ADC} = \operatorname{SDR} \operatorname{ADC} f_{ADC} = \operatorname{SDR} \operatorname{ADC} \operatorname{SDR} \operatorname{SDR} \operatorname{ADC} \operatorname{SDR} \operatorname{SDR} \operatorname{ADC} \operatorname{SDR} \operatorname{SDR} \operatorname{ADC} \operatorname{SDR} \operatorname{SDR$

 $f_{samp} \ge \frac{\kappa_d}{\tau_{rin}} \approx \frac{5}{\tau_{rin}}$ detector signal sampling (signal BW)

 $f_{res} \ge 2n_{\Phi_o} f_{samp}$ flux ramp modulated signal BW (resonator BW)

 $f_n \ge g_f f_{res} = \frac{2R_d g_f n_{\Phi_0}}{\tau}$ microwave tones separation ($g_f \ge 10$)

multiplexing factor

$$n_{TES} = \frac{f_{ADC}}{f_n} \le \frac{f_{ADC} \tau_{rise}}{2 R_d g_f n_{\Phi_0}} \approx \frac{f_{ADC} \tau_{rise}}{200}$$

for fixed $f_{ADC} = 550MHz$ and $n_{TES} \approx 30 \leftrightarrow \tau_{rise} \approx 10 \mu s$ with $f_{samp} = 0.5MHz$ \rightarrow check for slew rate, τ_{R} and $\Delta E...$ A. Nucciotti, LTD-17, Kurume, Japan, July 2017 17

HOLMES pixel design and test

- optimize design for speed and resolution
 - ▷ specs @3keV : $\Delta E_{FWHM} \approx 1eV$, $\tau_{rise} \approx 10\mu s$, $\tau_{decay} \approx 100\mu s$
- 2 μm Au thickness for full electron and photon absorption
 - GEANT4 simulation: 99.99998% / 99.927% full stopping for 2 keV electrons / photons
- **side-car** design to avoid TES proximitation and G engineering for τ_{decav} control

TES pixel testing with homodyne read-out

TES pixel testing with HOLMES DAQ / 1

ROACH-2 based Software Defined Radio

- ADC (550 MS/s 12bit) / DAC (1 GS/s 16bit)
- discrete components IF
- $n_{_{\phi 0}}$ = 2 , $f_{_{\mathrm{samp}}}$ = 500 kS/s
- 16 ch firmware from NIST (uses only half of available ADC bandwidth)
- 4 pixel measurements \rightarrow limited by available tone power
- tests on pixels similar to HOLMES ones (but not quite the same)
- checking algorithms, noise, ΔE , τ_{R} and slew rate

see J. Gard PB-10

TES pixel testing with HOLMES DAQ / 2

TES pixel testing with HOLMES DAQ / 3

HOLMES-like pixels without collimator

- $\Delta E_0 \approx 5 \text{ eV}$ $\Delta E \approx 7.5 \text{ eV} @ 2.6 \text{ keV}$
- $\tau_{rise} \approx 20 \ \mu s$ $\tau_{decay} \approx 140 \ \mu s$
- slew rate $\approx 0.1 \Phi_0/S \otimes 2.6 \text{ keV}$

• for subsequent (Δt) events with energy E_1 and E_2 : time resolution $\mathbf{T}_{\mathbf{R}} = \mathbf{T}_{\mathbf{R}}(E_1, E_2)$

$$N_{pp}(E) = A_{EC} \int_{0}^{\infty} \tau_{R}(E, \epsilon) N_{EC}(\epsilon) N_{EC}(E-\epsilon) d\epsilon$$

- Montecarlo pile-up spectrum simulations
 - ▷ event pairs with $E_1 + E_2 \in [2.4 \text{ keV}, 2.9 \text{ keV}]$ (drawn from ¹⁶³Ho spectrum), $\Delta t \in [0, 10 \mu s]$
 - \triangleright pulse shape and noise from NIST TES model, sampled with f_{samp} , record length, and *n* bit
- process with pile-up detection algorithms:
 - Wiener Filter WF or Singular Value Decomposition SVD
 - ▷ for $f_{samp} = 0.5MHz$, $\tau_{rise} \approx 20\mu s$
 - WF $\rightarrow \tau_{R} \approx 3 \,\mu s$

see B. Alpert PB-25

• SVD $\rightarrow \tau_{R} \approx 1.5 \ \mu s$

HOLMES detector design and fabrication

¹⁶³Ho

- TES array fabricated at **NIST**, Boulder, CO, USA
- ¹⁶³Ho implantation at INFN, Genova, Italy
- 1 μm Au final layer deposited at INFN Genova
- final fabrication process definition in progress
- HOLMES **4×16 linear sub-array** for low parasitic *L* and high implant efficiency

Target chamber for absorber fabrication / 1

- I⁶³Ho ion beam sputters off Au from absorber
 - ▶ ¹⁶³Ho concentration in absorber saturates
 - compensate by Au co-evaporation
- final 1 μm Au layer in situ deposition

see A. Orlando PC-25

Target chamber for absorber fabrication / 2

- system just delivered
- test are in progress

HOLMES schedule and conclusions

Project Year	2015	2016		2017		2018	
Task	S2	S1	S2	S1	S2	S1	S2
Isotope production							
TES pixel design and optimization							
Ion implanter set-up and optimization							
Full implanted TES pixel fabrication							
ROACH2 DAQ (HW, FW, SW)							
32 pix array 6mo measurement							
Full TES array fabrication							
HOLMES measurement						l III	

HOLMES project status

 $\hfill\square$ TES array and DAQ ready

ion implanter setting up is in progress

□ first ¹⁶³Ho implantation coming shortly

□ spectrum measurements will begin late in 2017

▶ 32 pixels for 1 month $\rightarrow m_{v}$ sensitivity ≈10 eV

Univ. Milano-Bicocca INFN Milano-Bicocca

G.Ceruti M.Faverzani E.Ferri A.Giachero A.Nucciotti A.Orlando G.Pessina A.Puiu S.Ragazzi

INFN Genova

M.Biasotti V.Ceriale G.Gallucci M.De Gerone F.Gatti L.Parodi F.Siccardi

INFN Roma

M.Lusignoli

INFN LNGS S.Nisi

B.Alpert D.Becker D.Bennett J.Fowler J.Gard J.Hays-Wehle G.Hilton J.Mates C.Reintsema D.Schmidt D.Swetz J.Ullom L.Vale

NIST

PSI R.Dressler S.Heinitz D.Schumann

CENTRA-IST

M.Ribeiro-Gomes

ILL U.Koester