

Advantages <u>Calorimetric</u> of Low (CLTD`s) Detectors Temperature over conventional detectors with respect to basic detector properties: E.g. energy resolution, energy linearity, detection threshold and radiation hardness results in its wide range of applications in heavy ion research.

Recent Application – investigation of Z-yields distributions of fission fragments, from thermal neutron induced fission at ILL, Grenoble for better understanding of the nuclear fission processes.

- Incident energies: 1 MeV few hundred MeV
- Direct coupling of cryostat to beam line: $T_{\Delta} \ge 1 \text{ K}$
- Absorber: Sapphire
 - high Debye temperature
 - > high resistivity against radiation damage
- Thermometer: superconducting Al film
 - > Film thickness 10 nm: $T_c \simeq 1.4$ K
- individual temperature stabilization for each detector pixel

• Active area of the array with 25 pixels: $15 \times 15 \text{ mm}^2$

Experimental Set-up				
Nuclear Reactor	LOHENGRIN	Absorber Foils	CLTDs in Cryostat	
 Produces fission fragments from ²³⁵U, ²³⁹Pu, ²⁴¹Pu(n_{th}, f) with different atomic masses A, kinetic energies E, ionic charges Q and nuclear charges Z. 	 Filters a specific A, E and Q but not Z. The spectrometer combines horizontal magnetic deflection (A/q) with subsequent vertical electrostatic deflection (E/q). 	 Passive absorber method provides the Z-separation. Test at Munich tandem accelerator suggested Si₃N₄ foils to be a better choice compared to previously used Parylene C w.r.t homogeneity & energy loss straggling in the foils. 	• <u>CLTD's</u> offer high energy resolution and negligible pulse height defect providing substantial advantage to observe the Z- separation for heavier ions.	

Preliminary Results

- Successful application of CLTDs for Z-yield measurements.
- For light masses results comparable to previously achieved best separation.
- With <u>CLTD + SiN</u>: Possibility to measure in symmetry and heavy mass region. \rightarrow to study odd-even staggering
- Systematic study of Z-resolving power ($Z/\Delta Z$).

- Extended data sets were cumulated to determine ⁹²Rb & ⁹⁶Y yield from 235 U, 239 Pu, 241 Pu(n_{th},f).
- Important for **neutrino oscillations** and the reactor antineutrino anomaly studies
- Towards mass symmetry, new Z-yield measurements were made in the range A = 110 to 112 for 241 Pu, and A = 111 to 113 for 239 Pu.
- We gained first Lohengrin data on the isotopic yields in the light-mass group of ²⁴¹Pu fission.
- An attempt to extend isotopic yield

Future Perspective	References		
 Development of calorimetric ΔE (transmission) detectors facilitating ΔE -E measurements simultaneously would bring huge improvements in the quality of Z- separation crucial for these measurements. 	 Cryogenic Particle Detection, Topics in Applied Physics 99 (2005) P. Grabitz et al., J. Low Temp. Phys. 184, 944 (2016) Proceedings 15th Int. Workshop on Low Temperature Detectors, JLTP (2014) U. Quade et al., Nucl. Phys. A487 (1988) 1 	Contacts: S.Dubey@gsi.de P.Egelhof@gsi.de	