

Investigation of Single Crystal Niobium for Microwave **Kinetic Inductance Detectors**

<u>Agnès Dominjon</u>^{*}, Shibo Shu^{***}, Matthias Kroug^{*}, Takashi Noguchi^{*}, Yutaro Sekimoto^{*}, Wenlei Shan*, Shigeyuchi Sekiguchi *, Tom Nitta**

- Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ)
- Institute of Physics, University of Tsukuba
- Institut of Radio Astronomy Millimetrique (IRAM), University of Grenoble

果尿大与

Microwave Kinetic Inductance Detectors

Aim: Study of Single Crystal Niobium with high RRR for sub-mm radiation detection

MKID^[1]: 1. Superconducting film into a resonant microwave circuit

- 2. Creation of quasi particles by incident photon (breaking of Cooper pair)
- 3. Change in Kinetic Inductance and Resonance: measure of (Δf) & (ΔA)
- ✓ simplicity of the device
- ✓ intrinsic frequency multiplexing capability
- ✓ good sensitivity from X-ray to sub-mm electromagnetic spectrum

Temperature (K)

- ✓ possibility of a large array of pixels
- ✓ readout with only one pair of microwaves coaxial cables

Fabrication

1 mm

Microscope view

DC properties of the Nb layer

Fabrication parameters

- R-Plane Sapphire wafer: 500 µm thick
- DC magnetron sputtering: high rate \approx 1,7 nm/sec
- Substrate heated at 800 °C during the deposition
- Vacuum = 10^{-6} Pa
- Low level of residual gas: Hydrogen, Nitrogen & H₂O
- MKID pattern with photolithography
- MKID definition with Reactive Ion Etching

for Single Crystal Nb

Characterization of MKID made of Single Crystal Nb

Low Temperature Detectors International Workshop - Kurume, Japan – July 2017 - agnes.dominjon@nao.ac.jp