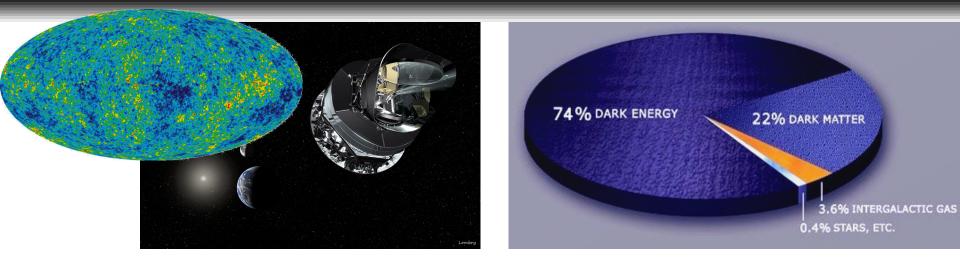
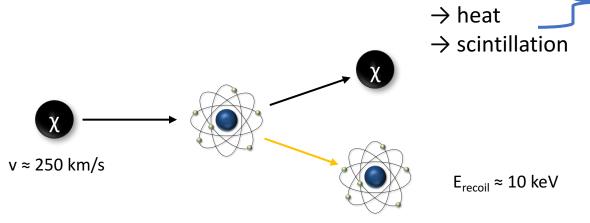
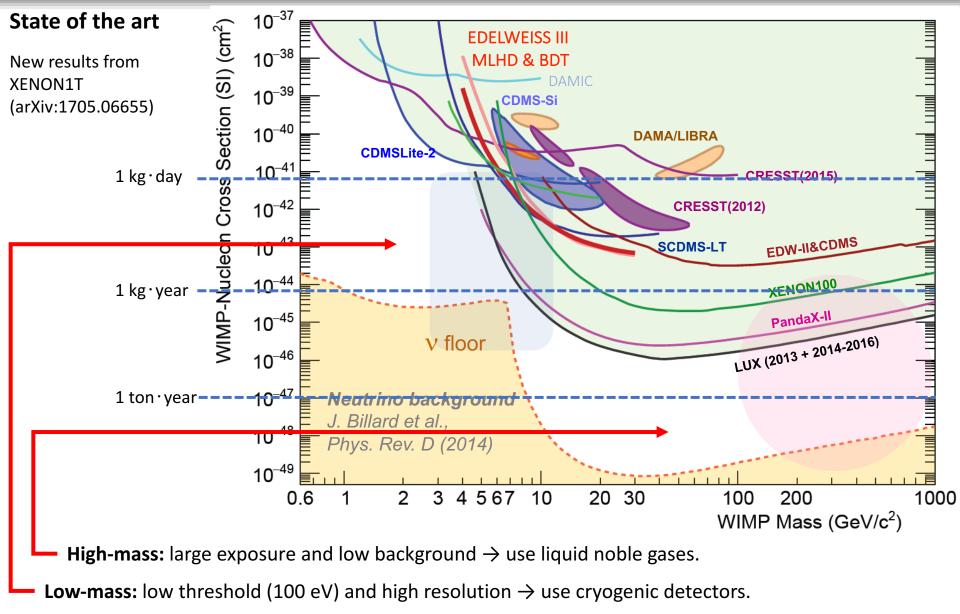


Status and Prospects of the EDELWEISS-III Direct WIMP Search Experiment


Romain Maisonobe^{*a*} on behalf of the EDELWEISS collaboration

^aUniv. Lyon, Université Lyon 1, CNRS/IN2P3, IPNL-Lyon, F-69622 Villeurbanne, France


17th International Workshop on Low Temperature Detectors, Kurume, Japan, 17-21 July 2017


How to detect a WIMP χ , candidate to Dark Matter ?

- χ production within particle collisions \rightarrow missing energy in final state,
- indirect detection within χ annihilation \rightarrow annihilation products in cosmic rays,
- direct detection by elastic scattering of χ on nuclei \rightarrow ionisation

Edelwerss Direct detection of Dark Matter

The EDW collaboration

EDELWEISS I - II

CEA / Irfu / Iramis (Saclay) CSNSM (Orsay) Institut Neel (Grenoble) IPNL (Lyon) LPN (Marcoussis)

University of Oxford

WIPP/LSBB

Y2L

2

Kamioka

Soudan

Boulby

LNGS

LSM

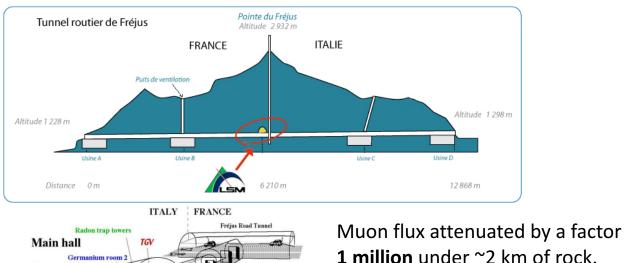
SURF

SNOLAB

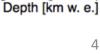
Jin-Ping

⁶⁻¹⁰ م

Muon flux [cm⁻²


 10^{-8}

10-9

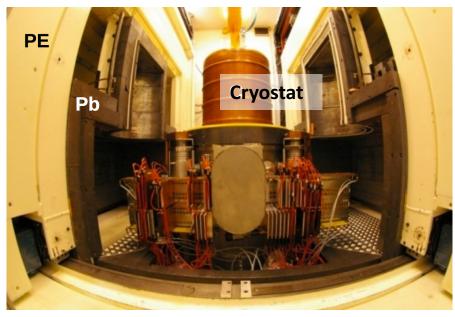

10⁻¹⁰

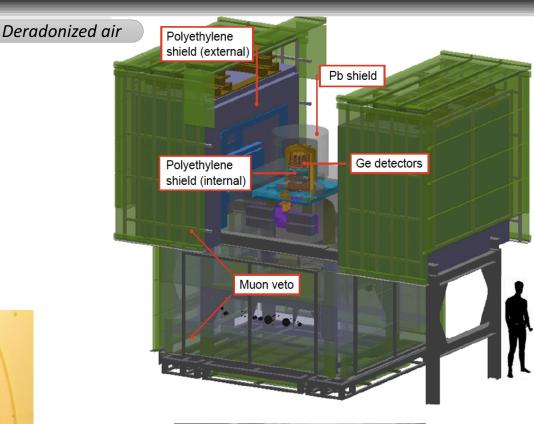
Laboratoire Souterrain de Modane

SHIN Gerr

Muon flux at sea level: 1.6·10⁻² /cm²/s

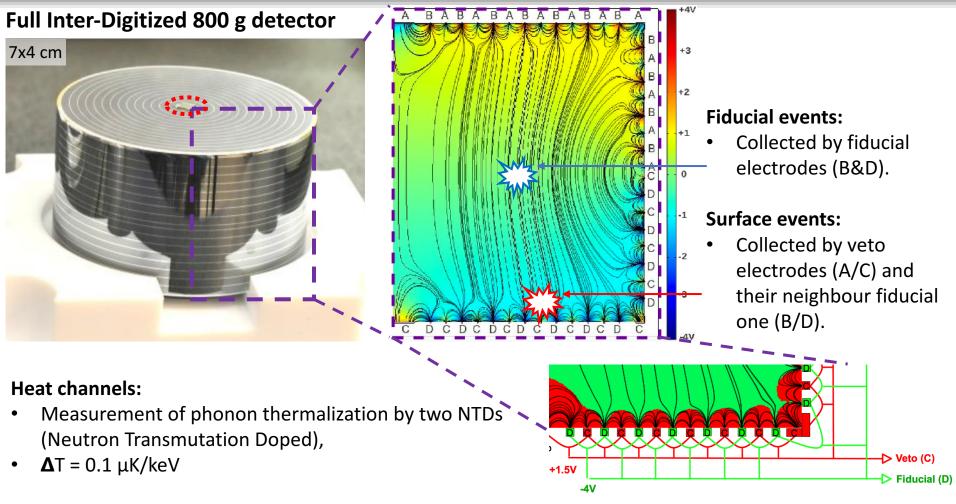
Edelwerss The EDELWEISS experiment


The set-up

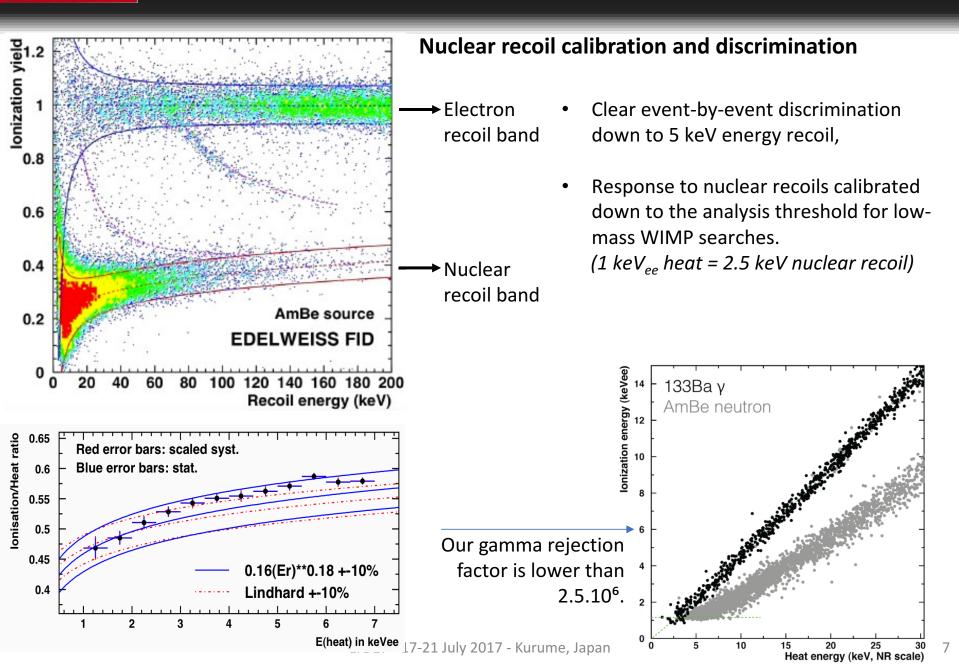

Shieldings:

- Clean room,
- Muon veto (plastic scintillator modules),
- Polyethylene shield (external + internal),
- Lead shiel,
- Radiopure materials.

Towers:


- 24 cryogenic detectors,
- T = 18 mK.

Edelwess The EDELWEISS detectors

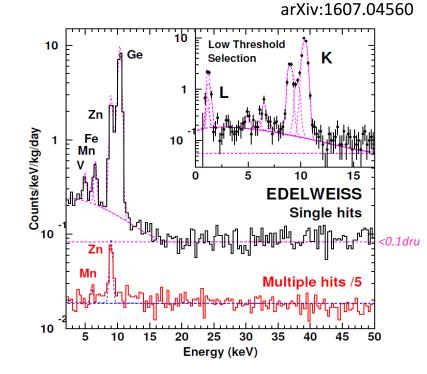


Ionization channels:

- Charges collected by Al concentric electrodes (width = 150 μ m, gap = 2 mm),
- Surface event rejection $\rightarrow \approx 99\%$ efficiency of fiducial event selection.

EDELWEISS performance (2017), arXiv:1706.01070

Edelwess Detection within EDELWEISS-III


WIMP search in 2014-2015

161 days of physics data with 24 FIDs > 3000 kg.day

- 19 detectors used in first measurement of cosmogenic production of ³He in Ge,
- 8 detectors with lowest threshold used for low-mass WIMP search.

Likelihood analysis

Thanks to low gamma background (<0.1 DRU), variation of cosmogenic exposure of its different detectors and ionization energy resolution (200 eV RMS).

EDELWEISS-III is the first Ge experiment to measure precisely the intrinsic tritium beta activation rate at the surface (Q_{β} = 18.6 keV, $T_{1/2}$ = 12.32 y): **P** = 82 ± 21 nuclei/kg.d

Edelwe'ss EDELWEISS-III – Likelihood analysis

Description of the backgrounds ionization energy (keVee) 01 21 events / 0.1 keVee 10³ Heat channel 8 detectors combined $(496 \text{ kg} \cdot \text{day})$ 10² 10 2. 3. 4. 10⁻¹ 8 events / 0.1 keVee 10³ Ion channel 5. 10² 10 5 15 10 heat energy (keVee) EPJC (2016) 76:548 e^{-} recoils from ³H decay + Compton and 1. 10^{-1} 8 cosmogenic gammas in the fiducial volume, ionization energy (keVee) surface gammas, 2. projection of the best fit PDF, nuclear recoils from neutron scattering, 3. → heat-only, surface betas, 4. – ⇔ Compton gamma, ²⁰⁶Pb recoils, 5. •⇔ ³H, heat-only events. 6. \Leftrightarrow cosmogenic + combined L-shell peak, Total PDF for each detector: $\mathcal{P}_{tot}(\sigma, \mu \mid m_{\chi}) = \frac{1}{\nu} \left| \mu_{\chi} \mathcal{P}_{\chi}(m_{\chi}) + \sum \mu_{i} \mathcal{P}_{i} \right|$ $\Rightarrow \beta \text{ events,}$ ⇒ ²⁰⁶Pb recoils.

LTD17 - 17-21 July 2017 - Kurume, Japan

Energy spectra in the two observables

10

10

12

12

heat energy (keVee)

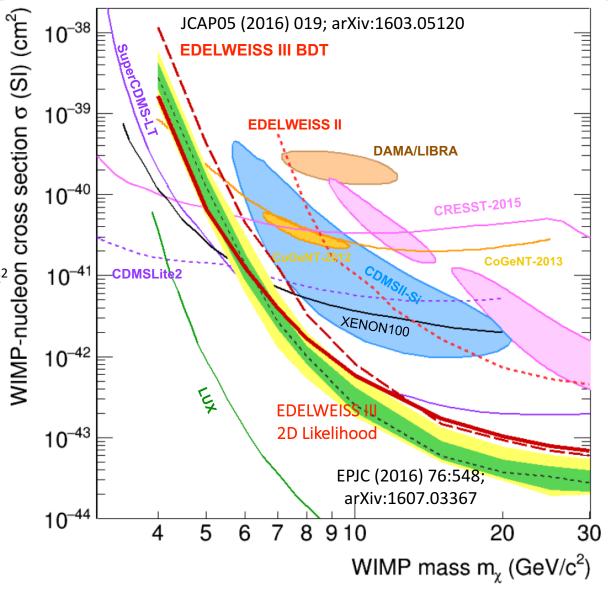
14

Edelwe'ss EDELWEISS-III – Likelihood analysis

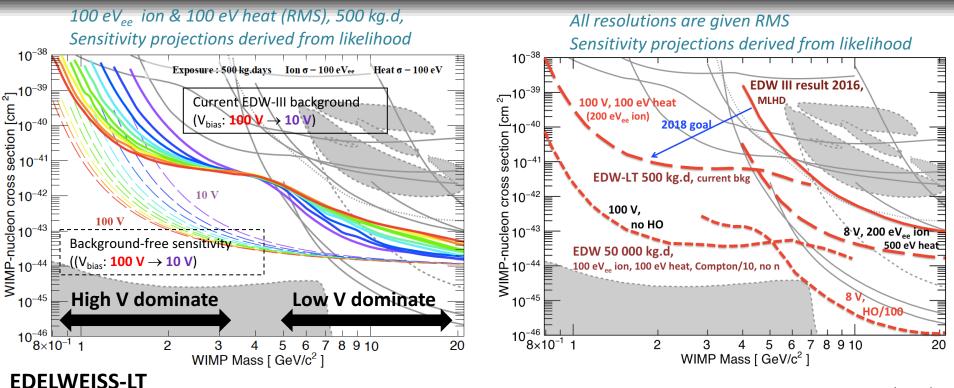
Results from Likelihood

 $1.6 \cdot 10^{-39} \text{ cm}^2$ at 4 GeV/c² to

 $6.9 \cdot 10^{-44} \text{ cm}^2$ at 30 GeV/c².


(due to higher signal efficiency & background subtraction)

From the **BDT** to **Likelihood** analysis: $1.1 \cdot 10^{-38} \text{ cm}^2 \rightarrow 1.6 \cdot 10^{-39} \text{ at } 4 \text{ GeV/c}^2$


 $3.34 \cdot 10^{-42} \text{ cm}^2 \rightarrow 1.66 \cdot 10^{-42} \text{ at } 8 \text{ GeV/c}^2$

We are limited by heat-only background:

- Ionisation resolution to reject,
- Heat resolution for low thresholds.

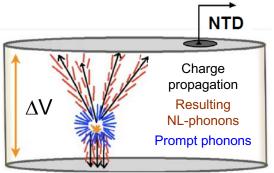
Edelwerss New EDELWEISS goal: 4x100

Physics with low threshold (<100 eV):

EDELWEISS projections (2017), arXiv:1707.04308

- Amplify signal \rightarrow apply Neganov-Luke effect: $V_{\text{bias}} = 8 \rightarrow 100 \text{ V}$,
- Lower intrinsic heat threshold \rightarrow improve heat sensor, $\sigma_{phonon} = 500 \text{ eV} \rightarrow 100 \text{ eV}$,
- Heat-only background \rightarrow reduction by factor 100.

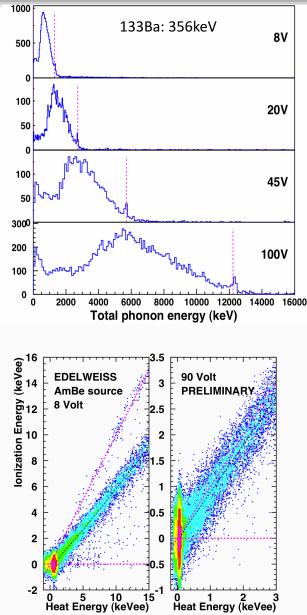
DMB8


Physics near the floor of ⁸B:

• Lower background at low energy \rightarrow HEMT transistor read out, $\sigma_{ion} = 200 \text{ eV}_{ee} \rightarrow 100 \text{ eV}_{ee}$.

LTD17 - 17-21 July 2017 - Kurume, Japan

Edelwerss R&D development: Neganov-Luke effect

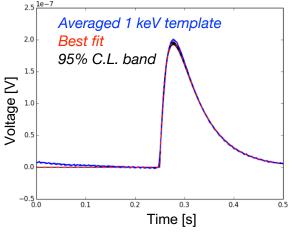

High-voltage for Neganov-Luke amplification

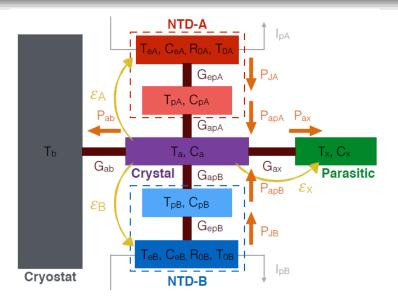
$$E_{\text{heat}} = E_{\text{recoil}} + E_{\text{Luke}}$$

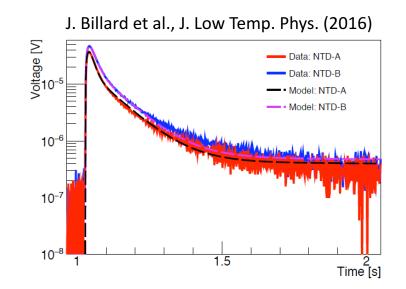
First measurement at the LSM with FID800 in 2015:

- Up to 100 V → boost by a factor of ~35,
- Best resolution for energy in keV_{ee},
- Sensitivity goal: threshold < 100 eV_{NR} using improved phonon channel resolution,
- Ionisation signal redundant in HV mode (no particle discrimination) but provides detailed diagnostics of charge collection.

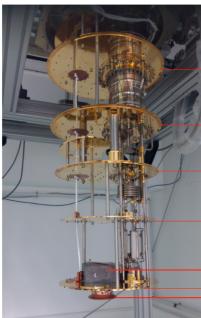
Edelwerss R&D development: heat sensor resolution


Optimisation of heat sensor – Thermal model


Better understanding of heat signal:


- Thermal modelling of signal,
- Identification of sensitivity to ballistic phonons,
- Identification of parasitic heat capacity.

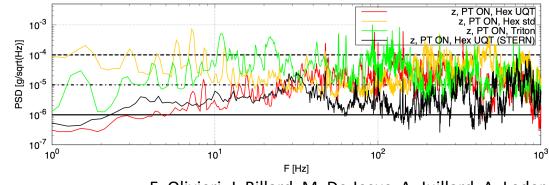
Sensitivity of 200 nV/keV achieved with 200 g test detector.



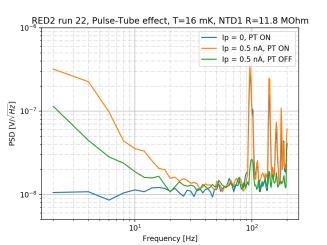
Edelwerss R&D development: vibrations decoupling

Dry cryostat @ IPNL for R&D

– 1st stage (50 K)


2nd stage (4 K)

Still (1 K)


Cold plate (100 mK)

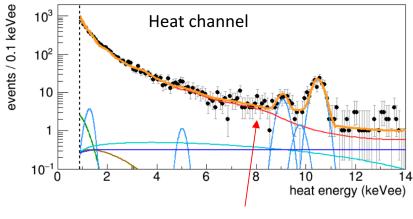
Lead brick Mixing Chamber (10 mK) Detector Cryostat Hexadry Standard (Hex std) produced by Cryoconcept with decoupling $50K/4K \rightarrow$ gas exchange.

Hexadry Ultra Quiet Technology (Hex UQT) in order to attenuate vibrations from the pulse-tube system.

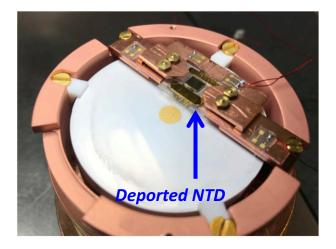
E. Olivieri, J. Billard, M. De Jesus, A. Juillard, A. Leder, Nucl. Instr. Meth. Phys. Res., A, vol. 858, June 2017, 73-79

Remaining harmonics with impact on heat channel signal of detectors.

Investigations for vibrations decoupling system.


Poster LTD17-PD18

LTD17 - 17-21 July 2017 - Kurume, Japan


Edelwess R&D development: heat-only events

Origins investigations

- HO background: dominant and reproducible at low energy,
- Studied hypotheses: noise, cryogenics, stress from detector suspension, glue...
- New detectors configurations and set-up to test hypotheses:
 - Deported NTD, glued on separated sapphire wafer,
 - Photo-lithographed high-impedance NbSi TES, sensitive to athermal phonons,
 - 4 new designed detectors have been tested at LSM.

heat-only

Edelwe'ss R&D development: HEMT read-out

600

500

400

300

200

100

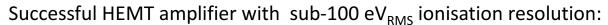
0

0

²⁴¹Am calibration

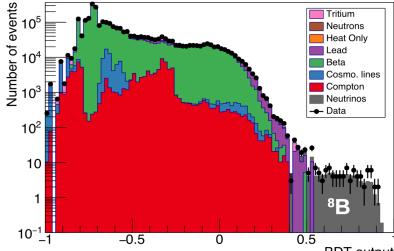
40

Pulse Amplitude (keV_{ee})


60

20

Improvement of ionisation read-out


Change from JFET to HEMT (High Electron Mobility Transistor): Counts

- Reduced intrinsic noise,
- Lower heat load,
- Operates at 4K stage:
 - shorter cabling, 0
 - reduced capacitance, Ο
 - better signal-to-noise ratio. 0

- Upgrade EDW ionisation read-out with this new design,
- Electrode design to reduce detector capacitance to reach 50 eV_{RMS} .

n -0.6-0.3 0.3 0.6 0 Pulse Amplitude (keV_{ee}) A. Phipps et al., arXiv:1611.09712

JLTP (2016) 184:505

100

Baseline

resolution

 $91 \, eV_{RMS}$

600

500

400

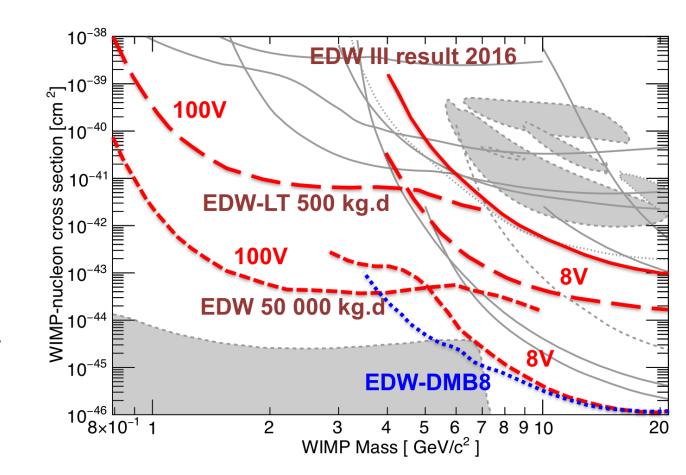
300

200

Counts

BDT output

Edelwerss Conclusion and outlook


Results and perspectives

Analysis:

- Likelihood analysis with improved results,
- Development of heat-only background model (ongoing).

R&D with EDELWEISS-LT and DMB8:

- Low-mass program at LSM,
- R&D on HV, HEMT, sensors, heat-only,
- Explore the ⁸B region with discrimination.

Thanks for your attention