19/July/2017

#### **17th International Workshop on Low Temperature Detectors**



# Single Microwave-Photon Detector based on Superconducting Quantum Circuits



#### **Kunihiro Inomata**

Advanced Industrial Science and Technology (AIST) Center for Emergent Matter Science, RIKEN





## **Collaborators**

- Kazuki Koshino (Tokyo Medical and Dental Univ.)
- Zhirong Lin (CEMS, RIKEN)
- William D. Oliver (MIT Lincoln Laboratory)
- Jaw-Shen Tsai (Tokyo Univ. of Science/CEMS, RIKEN)
- NEC Tsuyoshi Yamamoto(NEC Smart Energy Lab.)
- Yasunobu Nakamura (RCAST Univ. of Tokyo/CEMS, RIKEN)



Prof. Koshino









Dr. Yamamoto

CEMS















#### 1. Motivation

2. Impedance-matched  $\Lambda$  system (artificial  $\Lambda$ -type atom) 3. Single microwave-photon detection

4. Summary

#### **Quantum information processing with photons** ← Frequency $10^{20}$ $10^{10}$ $10^{22}$ $10^{18}$ $10^{16}$ $10^{0}$ $10^{24}$ $10^{12}$ $10^{6}$ $10^{4}$ $10^{2}$ $\nu$ (Hz) UV X rays $\sim 10^{\circ}$ Microwave FM AM Long radio waves y rays Radio waves Wikipedia $10^{-14}$ $10^{-12}$ $10^{-16}$ $10^{-10}$ $10^{-8}$ $10^{-4}$ $10^{-2}$ $10^{4}$ $0^0$ $10^{2}$ $10^{6}$ $10^{8}$ $\lambda$ (m) Wavelength $\rightarrow$ **Optical photons (~ visible light) Microwave photons** Communication based on a single photon Î∼ GHz Quantum optics <u>2</u> μm Science 2003 L= 1 = 25 mm Coherent interaction between a qubit and a MW photon Single photon detectors NICT space=100 5 um Flying qubit PRA 2004. Quantum network based on Quantum network based Nature 2004. Diameter=35 NIST Hamamatsu MW photons, etc... **SSPD** TES APD η > 90 % η > 90 % Single photon detector η ~ 30 %

## Photon detectors in MW domain

Harmonic oscillator mode [J. Wenner et al., PRL (2014)]



- ✓ Efficiency = 0.994
- ✓ Precise photon pulse shaping
- Time-dependent control of system parameters
- MW nanobolometer [J. Govenius et al., PRL (2016)]



- ✓ Efficiency ~ 0.56 (for ~200 photons ~ 1.1 zJ)
- $\checkmark\,$  No single-photon sensitivity
- ✓ Dead time: ~100  $\mu$ s



Three-level cascaded system [S. R. Sathyamoorthy et al., PRL (2014)]



- ✓ Efficiency > 0.9 (theoretically)
- ✓ QND measurement
- Chain of transmons connected via circulators

## Single photon detection in MW domain

Impedance-matched Λ system

K. Koshino, K. I. *et al., PRL* (2013) K. Inomata *et al., PRL* (2014)



- Sensitivity to single MW photon
- $\checkmark$  Efficiency: ~ 0.66 (theory > 0.9)
- Dead time: short (reset pulse)
- ✓ Dark count: ~0.014
- Free from photon pulse shaping
- ✓ No time-dependent control of params

K. Koshino, K. I *et al.*, *PRA* (2015) K. Inomata *et al.*, *Nat. Commun.* (2016)

#### **Time-gate operation**



#### 1. Motivation

#### **2. Impedance-matched** $\Lambda$ system (artificial $\Lambda$ -type atom)

#### 3. Single microwave-photon detection

4. Summary







Perfect reflection



Perfect absorption (Impedance matching)

#### Impedance-matched A system

- Deterministic down-converter
- Single photon detector
- Single photon memory

K. Koshino, PRA (2009, 2010).

#### ↓Impedance-matched A system using dressed states









K. Inomata et al., PRL (2014)

#### **Down-converted spectrum**



 $\mathbf{T}$ 



#### 1. Motivation

#### **2. Impedance-matched** $\Lambda$ system (artificial $\Lambda$ -type atom)

#### 3. Single microwave-photon detection

4. Summary

![](_page_12_Picture_5.jpeg)

### **Device & Measurement setup**

![](_page_13_Figure_1.jpeg)

#### **Device & Measurement setup**

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

#### Triton 200 (Oxford)

- ✓ Base temperature: 10 mK
- ✓ Input MW line: 20
- ✓ Output MW line with a HEMT: 4

#### **GHzDAC (designed by J. Martinis)**

- ✓ 1GSa/s
- ✓ Pulse shaping with ns precision

### Pulse sequence for itinerant photon detection

![](_page_15_Figure_1.jpeg)

K. Inomata et al., Nat. Commun. (2016)

#### Linerant photon detection using Z-matched Λ system

![](_page_16_Figure_2.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_1.jpeg)

#### A Photon detection with a reset pulse

![](_page_19_Figure_1.jpeg)

## Summary

- ✓ Demonstration of itinerant-photon detection using an artificial  $\Lambda$ -type atom.
- ✓ Single-photon detection efficiency =  $0.66 \pm 0.06$ .
- ✓ Demonstration of "*reset*" of the system.
- $\checkmark$  Repetition time for the photon detection ~ 1.3 MHz.
- ✓ Dark count probability =  $0.014\pm0.001$ .

![](_page_20_Figure_6.jpeg)