

¹⁹³Pt Electron Capture Spectra with Microcalorimeters

Katrina E. Koehler^{a,b}, Mark P. Croce^a, Michael Famiano^b, Christopher J. Fontes^a, Michael W. Rabin^a, Dan Schmidt^c, Joel Ullom^c ^aLos Alamos National Laboratory, ^bWestern Michigan University, ^cNational Institute of Standards and Technology

Context

Neutrino mass measurements using calorimetry require:

- High resolution
- Lots of counts!
- Well-understood theory

Why study ¹⁹³Pt?

- Minimal sample preparation or deposition
- Nearly perfect absorber—entire absorber is single element aside from impurities
- Independent check on the theoretical calculations

Irradiation

A 10 mg sample of ¹⁹²Pt-enriched Pt was irradiated for approximately 7 days with a predicted production of 2.8 Bq of ¹⁹³Pt per μ g of platinum.

Gamma Spectroscopy

HPGe spectra were used to identify isotopes created within the foil and their activities. The activity of the sample as of 4 July 2017 is dominated by ¹⁹²Ir (18.6 Bq/ μ g). Its short half life (74 days) means that in a year this impurity will decay to a more favourable 0.7 Bq/ μ g, the same activity as ¹⁹³Pt.

Isotope	Activity [Bq/10mg]	*Activity inferred, rather than measured directly		
¹⁹² Ir	186000	⁵¹ Cr	577	
¹⁹³ Pt*	7460	¹⁸² Ta	77.8	
⁴⁶ Sc	897	⁶⁵ Zn	23.6	
^{192m2} Ir*	864	⁶⁰ Co	22.5	

Figure 1. The ¹⁹²Pt-enriched Pt foil (left), placed within a polyethylene tube (upper right), was irradiated at the MIT reactor (lower right), exposing it to a high thermal flux to create ¹⁹³Pt.

Table 1. Activities as of 4 July 2017.

Figure 2. The isotopes present in the platinum foil as determined through gamma spectroscopy. The total number of Pt atoms is ~10¹⁹. By July 2018, ¹⁹³Pt will be the most active isotope in the sample.

Theoretical Spectrum

Figure 3. A ¹⁹³Pt 1-hole spectrum with 10⁷ counts, showing varying levels of fidelity in the atomic overlap calculation. Left inset shows model dependencies of peak heights. Right inset shows spectrum in linear scale.

Experimental Calorimetric Spectrum

A small piece ($\approx 0.04 \ \mu g$) was cut from the irradiated foil and incorporated into a microcalorimeter detector. Shown in Figure 4 is the first experimental calorimetric electron capture spectrum of ¹⁹³Pt.

TES details:

- 350 µm square Mo-Cu bilayer
- Transition temperature near 110 mK Identify unknown peaks

Further analysis:

- External energy calibration
- Quantify activity of ¹⁹³Pt
- Direct comparisons with theory

Observations:

- Observed electron capture lines for ¹⁹²Ir and ¹⁹³Pt
- Unknown peaks between Mand L-clusters
- Comparable electron capture rates for ¹⁹²Ir and ¹⁹³Pt

The theoretical spectrum for ¹⁹³Pt has never before been published. The spectrum shown above in Figure 3 shows the differences in a single-hole spectrum with varying levels of fidelity in the atomic overlap calculation. The wavefunctions used to the build the spectra are calculated with DFS atomic structure codes.

Model details:

- O(N) indicates N orbital overlap factors with unmatched quantum numbers
- V indicates Vatai approximation for the atomic overlap
- a indicates wavefunction evaluated at r = 0 au
- b indicates wavefunction evaluated at $r = 1.365 \times 10^{-4}$ au

Figure 4. (Top) A small piece was cut from the irradiated foil and attached to a TES. (Bottom) Preliminary calorimetric measurement of platinum foil. Electron capture peaks from ¹⁹³Pt and ¹⁹²Ir are visible. Some peaks are yet to be identified.

Los Alamos National Laboratory