A broadband antenna for on-chip integrated spectrometers at 300-1000 GHz

Sebastian Hähnle^{1,2}, Ozan Yurduseven², Nuria Llombard², Juan Bueno¹, Vignesh Murugesan¹, Juan Bueno¹, David Thoen², Jochem Baselmans^{1,2}

- ¹ SRON Netherlands institute for Space Research, ² Delft University of Technology

Motivation

The leaky lens antenna is ideally suited for the use in integrated on-chip spectrometers:

- Large bandwidth (>1:3)
- Large minimal feature size (λ/100)
 → Feedline width > 1 um @ 1 THz
- linear polarization, can be extended to a dual polarization configuration

Leaky wave antenna principle

- Non-resonant antenna with broad bandwidth
- Air gap between the lens and the antenna increases directivity, leading to a better illumination of the lens surface

13µm

2. A separate spacerwafer is clamped with

3. Silicon lens glued to spacerwafer

Si lens

1.2mm

1. Antenna + MKID on Si-wafer with SiN-membrane

alignment pins to realize the 13 um leaky-gap.

the lens surface

Chip Assembly:

- AR-coating,

Spacer

Antenna-

KID chip

 $F_{center} = 850GHz$

Chip Design for Antenna characterization

Assembled chip in copper sample holder.

Optical efficiency

Cross section of the setup inside the cryostat

Beam Patterns

Optical Coupling efficiency measured with 3 different filter stacks: 346, 660 & 865 GHz

Summary

A leaky lens antenna operating between 300-1000 GHz has been designed and fabricated.

Optical efficiency measurements at 350, 660 and 865 GHz show good performance and agreement with simulations over the whole frequency range.

Al line NbTiN gnd 90 GHz < f < 1.2 THz

CPW Hybrid MKID

Outlook

Further validation of simulations with:

- Beam pattern measurements
- Polarization sensitive measurements

GHz Readout line

Optical image of the chip surface with frontside & backside illumination

