

# Characterization of optical transition-edge sensors

#### Kaori Hattori

#### National Institute of Advanced Industrial Science and Technology (AIST)



## Outline

- Optical transition-edge sensor
- Complex impedance of fast TES ( $0.2 5 \mu s$  fall-time)
  - Impedance measurements at high frequency (up to 20 MHz)
  - $\alpha$ ,  $\beta$ , time constant, and energy resolution



# **Optical transition-edge sensor**



- Ti/Au bilayer (20 / 10 nm)
- Small heat capacity : 5  $\mu$ m  $\times$  5  $\mu$ m
- Fast recovery time : 0.2  $\mu$ s ( $T_c$  = 360 mK), 4  $\mu$ s (170 mK) TES not released - dielectric layer underneath Cooled by electron-phonon thermal coupling



# Applications

Optical TES can resolve energy and photon number.

- Quantum information Short pulse recovery time and efficiency  $\sim 100\%$ 98±1% at 850 eV D. Fukuda et al., Opt. Exp. 19 (2012) 870.
- **Biological imaging** -Extremely low dark counts and high energy resolution

Microscopy imaging Daiji Fukuda, Friday





Niwa et al. Scientific Reports 7 (2017) 45660.

Typically  $\Delta E_{\rm FWHM}$  = 0.1 - 0.2 eV at 0.8 eV

#### What limits energy resolution?

#### 2017/7/18



# Applications – biological imaging

| color             | red  | green | purple |
|-------------------|------|-------|--------|
| λ [nm]            | 780  | 550   | 380    |
| E [eV]            | 1.6  | 2.3   | 3.3    |
| $\Delta E \ [eV]$ | 0.15 | 0.15  | 0.15   |
| Δλ [nm]           | 75   | 38    | 18     |

Microscopy imaging Daiji Fukuda, Friday



Niwa et al. Scientific Reports 7 (2017) 45660.

Energy resolution  $\sim$  constant.  $\Delta \lambda$  increases as wavelength is longer.



RGB imaging is doable. Significant amount of leakage existing. Need higher energy resolution.



# **Energy resolution**

Theoretical limit

$$\Delta E = 2.36 \sqrt{4k_B T_c^2 C / \alpha \sqrt{n(1+2\beta)/2}}$$

How far is energy resolution of optical TESes from theoretical limit?

Complex impedance  

$$Z_{TES}(\omega) = R_{TES}(1+\beta) + \frac{R_{TES}\mathcal{L}}{1-\mathcal{L}} \frac{2+\beta}{1+i\omega\tau_0/(1-\mathcal{L})}$$

Assume simple thermal model  $\leftarrow$  Optical TES doesn't have absorber.

#### 2017/7/18



### **Complex impedance**

$$Z_{TES}(\omega) = R_{TES}(1+\beta) + \frac{R_{TES}\mathcal{L}}{1-\mathcal{L}} \frac{2+\beta}{1+i\omega\tau_0/(1-\mathcal{L})}$$

#### Fast response

 $\rightarrow$  Measure impedance at high frequency

Challenge

- $\rightarrow$  Parasitic impedance in circuit
- $\rightarrow$  impedance mismatch
- $\rightarrow$  hard to build appropriate circuit model



### **Transfer function**



At  $\omega >> 1/\tau_{\text{TES}}$ , complex impedance is independent of frequency,

$$Z_{\text{TES}}(\omega \rightarrow \infty) = R_{\text{TES}}(1+\beta).$$



#### Corrected transfer function at high frequency





#### **Complex impedance**





### Temperature / current sensitivity



#### 2017/7/18



### **Temperature sensitivity**



 $\alpha$  and  $\beta$  from complex impedance.

2017/7/18

alpha





2017/7/18

LTD17

13



#### Energy resolution measurements vs theoretical limit





### Ultra fast TES



Time constant = 0.2  $\mu$ s Significant deviation from simple model at bias point for photon detection (0.1  $R_n$ )

#### 2017/7/18



# Summary

 Unique features of optical TES are Fast recovery time : 0.2 – 4 μs No absorber or additional heat capacity : simple thermal model

Complex impedance measurements at high frequency up to 20 MHz Showed new correction method Agreed with temperature sensitivity calculated from IV curve. time constant of photon signals.

- Measured  $\Delta E \ge 5 \times$  theoretical limit. We will investigate excess noise.
- Ultra fast TES (0.2 μs)
   Need to consider new thermal model



#### Structure

