

Low-Loss, Low-Noise, Crystalline Silicon Dielectric for Superconducting Microstriplines & Kinetic Inductance Detector Capacitors

F. Defrance, A. D. Beyer, J. Sayers, S. Golwala

Monday 17th July 2017

Outline

- > Introduction
- > Dielectric losses
- > Crystalline Silicon wafers: Tests
- > Conclusion and Perspectives

Introduction

- > Technology developments in superconducting sensors for mm/submm astronomy require low-loss dielectric thin films:
 - Microstrip-coupled superconducting mm/submm detectors
 - (e.g. Phased array antennas)
 - Superconducting spectrometers (e.g. SuperSpec)
 - Kinetic inductance detectors (KIDs) (e.g. MUSIC)

MUSIC phased array antenna

SuperSpec

KID interdigitated capacitor

I - Introduction

Dielectric Loss (tan δ)

- > Dielectric loss is critical and determines:
 - Optical loss in microstrip
 - Resolution of spectral channels
 - Two-level-system (TLS) dielectric fluctuation noise of KID capacitor
- > Dielectric currently used: SiO₂ and SiN_x
 - Convenient for fabrication
 - Tan $\delta \sim 10^{-3}$
 - Limits possible architectures & spectral resolving power
 - Requires the use of interdigitated capacitors (take a large area)
 - \rightarrow Need lower loss dielectrics

Advantages of low loss dielectrics

- > Phased-array antennas:
 - Move detectors away from antenna and shield from absorption of unfiltered (spatial or spectral) light.
 - Allows to simplify detector wiring, long wiring busses possible.
 - Multiscale antennas covering a decade of spectral bandwidth possible.
- > Superconducting spectrometers:
 - Improve spectral resolution limit, (Rmax ~ 1/tan δ), from 1e3 to 2e5
- > KIDs:
 - Interdigitated capacitors (IDC) replaced by parallel-plate capacitors 40 times smaller in area. Currently, IDCs can be an appreciable fraction of focal plane area.

Low loss dielectrics candidates

- > Crystalline silicon (cSi)
 - Tan δ < 5e-6

Ι

Ш

IV

- \rightarrow 200 times lower than SiO₂ and SiN_x
- > Hydrogenated amorphous silicon (a-Si:H)
 - Tan δ < 5e-5
 - \rightarrow Not as good as cSi but still 20 times lower than SiO₂ and SiN_x
- > Goal: Tan δ < 1e-4</p>
 - Both materials would provide significant gains for KIDs noise
 - cSi has been developed and tested
 - a-Si:H studies exist in the literature

Conclusion

- > Crystalline Silicon:
 - Very low loss dielectric
 - Important improvements possible for KIDs, superconducting spectrometers & phased array antennas
- > Hydrogenated amorphous silicon:
 - Not as good as cSi but still 20 times better than SiO_2 and SiN_x
 - Not tested here but good low loss dielectric candidate
- > Goal: Development of crystalline Silicon wafers
 - 2 and 5 µm thick
 - Develop control experiment to measure tan $\delta,$ Q factor, TLS noise
 - Test cSi with and without wafer bonding

cSi Wafers: Test

- > Internal quality factor (Qi)
- > Loss tangent (F δ_0): from frequency shift measurement Calculation of an approximate value of df/dT, deduction of the relation between df/f, f, and T using the formula from Jiansong Gao's thesis:

$$\frac{f_r(T) - f_r(0)}{f_r} = \frac{F \delta_{\text{TLS}}^0}{\pi} \left[\text{Re}\Psi \left(\frac{1}{2} - \frac{\hbar\omega}{2j\pi k_B T} \right) - \log \frac{\hbar\omega}{2\pi k_B T} \right].$$
(5.74)

III – Crystalline Silicon wafers: Tests

cSi Wafers: Fabrication

- \rightarrow Goal: Evaluate wafer bonding effect on $F\delta_0$ and Qi
- > LC resonators

I

Π

Ш

IV

Fabrication with and without bonding

III – Crystalline Silicon wafers: Tests

cSi & a-Si:H: Other studies

- > a-Si:H: Mazin *et al.* (2010)
 − tan δ ∈ [2 50]e-6
- > cSi: Weber *et al.* (2011)
 - − tan $\delta \in [1 6]e$ -6 (Surface oxide removed)
 - tan δ derived from Qi

5 µm cSi non-bonded wafer: Comparison

> Test results:

I

Π

Ш

IV

- Loss tangent: $F\delta_0 \in [1.2 1.6]e-5$
- Internal quality factor: Qi \in [1.0 8.0]e5(except for 1 resonator)
- > Comparison with other studies:
 - Loss tangent:
 - 3 10 times worse than Weber *et al.*
 - Better than Mazin et al. (a-Si:H) at low powers, comparable at HP
 - Qi:

3 times worse than Weber *et al.* Similar to Mazin *et al.* (a-Si:H)

- > Conclusion:
 - Our results are comparable with the literature

5 µm cSi wafer bonded

> 2 devices tested:

I

Ш

IV

- Loss tangent: $F\delta_0 \in [6.0 12]e-5$
- Internal quality factor: Qi \in [3.0 8.0]e4
- > Comparison with non-bonded 5um wafer:
 - Loss tangent: factor 4 worse than non-bonded
 - Qi: factor 10 worse than non-bonded
- > Conclusion
 - The wafer bonding degrades the cSi characteristics
 - However, $F\delta_0$ is still about 10 times better than SiO_2 and SiN_x

2 µm cSi Wafer

2 µm cSi Wafer

> 1 device tested:

I

Π

Ш

IV

- Loss tangent: $F\delta_0 \in [5.0 7.0]e-5$
- Internal quality factor: Qi > 1e6
- $\ >$ Comparison with non-bonded 5 μm wafer:
 - Loss tangent: factor 3 higher than 5 μm non-bonded
 - Qi: Better than 5 µm non-bonded
- > Conclusion
 - Loss tangent a bit worse than with the 5 μm wafer
 - Very good Qi

Conclusion & Perspectives

- I I I IV
- > 2 & 5 µm cSi non-bonded:
 - Loss tangent always < 8e-5</p>
 - Internal quality factor > 1e5
- > 5 µm cSi bonded:
 - Loss tangent always < 1.2e-4
 - Internal quality factor > 3e4
- > Results comparable to literature (cSi and a-Si:H).
- > Better than currently used dielectrics (SiO₂ & SiN_x)
- > TLS noise tests ongoing (planned for next week!)
- > Very promising results. Test of thinner wafers planned