

Design of the EBEX-IDS Detectors

F. Aubin^{1,†}, S. Hanany¹, B. Johnson², A. Lee³, A. Suzuki^{3,4}, B. Westbrook³, and K. Young¹. ¹School of Physics and Astronomy, University of Minnesota; ²Columbia University; ³University of California, Berkeley; ⁴Lawrence Berkeley National Laboratory. [†]Corresponding author: faubin@umn.edu

EBEX-IDS

- Cosmic microwave background (CMB) polarimeter
- Balloon-borne platform
- 20 days at float circumnavigating Antarctica
- Proposed launch in December 2021

Low Thermal Conductance Bolometers

- Zigzag design \rightarrow Increases effective leg length \rightarrow Decreases G
- 20,562 bolometers
- 3,427 SAMPs, dual-polarization sensitive
- Observe a 1500 deg² patch of the sky

Science Objectives

• Characterize the polarization of Galactic dust

- Detect primordial gravity waves

150/180

360

Band (GHz)	150	180	220	250	280	320	360
# Bolometers	2316	2316	3360	3202	3360	2648	3360
$\overline{\mathrm{NEQ/U}(\mu K\sqrt{s})}$	4.17	4.36	5.35	6.19	8.81	13.69	23.33
FWHM (')	7.2	6.0	4.9	4.4	3.9	3.6	3.2

Motivations

• Deep maps at 3.2-7.2 arcmin resolution • 7 frequency bands between 150-360 GHz • 250-360 GHz complementary to ground-based telescopes • Observe the same patch of sky as ground-based: - POLARBEAR/Simons Array instrument - BICEP/Keck Array instrument

Technology Development

- **First** operation of sinuous antenna multichroic pixels (SAMP) on a balloon platform • Development of **low** thermal conductance

Measurements of G

Optical Properties

Individual lenslet for every pixel[5]

Target

2500

Capacitor

Inductor

-

Conclusions

- 1.5 m aperture Gregorian Mizuguchi-Dragone telescope
- 4 K secondary and tertiary mirrors
 - \rightarrow Minimizes the loading form the instrument
- Achromatic half-wave plate
- Re-use of EBEX flight tested hardware [1, 2, 3]
- A prototype of a 9 pW/K bolometer achievable for 1320 μ m leg length. Next: High yield geometry (•): symmetric design • Low thermal conductance (•): 12 μ m wide legs
 - Critical temperature of 420 mK
- Fabrication of EBEX-IDS bolometer wafers demonstrated
- Demonstration of the Increased FDM multiplexing factor in progress

Acknowledgements

EBEX-IDS Collaboration The would like to thank the support from NASA (NNX17AH30G).

References

[1] The EBEX Collaboration et al. The EBEX Balloon Borne Experiment - Optics, Receiver, and Polarimetry. Submitted to ApJ (arXiv:1703.03847), 2017. [2] The EBEX Collaboration et al. The EBEX Balloon Borne Experiment - Detectors and Readout. To be submitted to ApJ, 2017. [3] The EBEX Collaboration et al. The EBEX Balloon Borne Experiment - Gondola, Attitude Control, and Control Software. Accepted in ApJ (arXiv:1702.07020), 2017. [4] Bender, A. N. et al. Digital Frequency Domain Multiplexing Readout Electronics for the Next Generation of Millimeter Telescopes. Proc. SPIE 9153, 91531A (arXiv:1407.3161), 2014. [5] Siritanasak, P. et al. The Broadband Anti-reflection Coated Extended Hemispherical Silicon Lenses for Polarbear-2 Experiment. Journal of Low Temperature Physics 184, 553–558, 2015.