

Development of a Massive, Highly Multiplexible, Phonon-Mediated Particle Detector using Kinetic Inductance Detectors Y.-Y. Chang^{1,*}, B. Cornell¹, T. Aralis¹, B. Bumble², S. R. Golwala¹ ¹Division of Physics, Mathematics, & Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

•Scientific motivation: Improve position reconstruction fidelity and energy resolution for rare-event experiments, such as low-threshold dark matter search, coherent neutrino scattering, and neutrino-less double beta decay ($0\nu\beta\beta$).

²Jet Propulsion Laboratory, Pasadena, CA 91107, USA

- Technical requirement: O(10) eV energy resolution, robust position reconstruction with 1 mm resolution.
- Technological approach: Phonon-mediated detector using $O(10^2)$ KIDs on O(1) kg Si or Ge substrate.
- •**Result**: We have validated the RF design of an 80-KID prototype on a 1 mm \times Ø76 mm wafer.
- Future work: Increase to 180 KIDs, calibrate with X-rays, scale up to O(2.5) cm thick substrates.

Why KID-based phonon-mediated detectors?

е,

10^{--∠}-10

- Surface and/or incomplete ionization collection events may limit the sensitivity of experiments using phonon-mediated detectors [1].
- · Rejection of such events improves with position reconstruction fidelity and energy resolution.
- 0.4 • This fidelity can be improved by high 0.2 phonon sensor density, for which KIDs are a natural 0 --10 approach. KIDs x position (mm) also promise excellent energy resolution O(10) eV [2].

Design and simulation

Design for 80 thin Al KIDs over 3.05 ~ 3.45 GHz Feedline: 300 nm Nb coplanar waveguide

V Dosition (mm)

RF response analysis and correction

Kinetic inductance fraction (α): Inferred from 0.0 pH/sq simulation, we have $\alpha_{data} \sim 0.076$ $\sigma_{df/f_{desian}} \sim 0.07 \%$: Expect future devices with 180 resonances in 3.05~3.45 GHz to have 10% probability of one out-of-sequence KID.

The average coupling quality factor $Q_c \sim 2 \times 10^5$ is 3 times lower than design.

• The internal quality factor of thick Nb film, $Q_i \sim 10^4$, dominates the total resonant quality factor and produces shallow resonances.

LTD17, July 17th, 2017

RF validation (this work):

Fabrication

• Nb prototype for

 \emptyset 76 × 1 (mm) intrinsic Si

1) 300 nm Nb, single deposition 2) Fluorine Reactive Ion Etching (RIE) to produce KIDs and CPW Al-KIDs phonon detector (ongoing):

1) Chlorine RIE to produce KIDs 2) 50 nm Nb over 30 nm Al as protection layer, deposited in succession 3) 300 nm Nb, 2nd deposition 4) Fluorine RIE to produce CPW

the future

Future work

Increase the number of KIDs by 2~3 times Fabricate with Al KIDs and measure resolution with X-rays.

Expected energy resolution: [2]

 $\sigma_E = \frac{\Delta_{Al}}{\eta_{read}} \sqrt{\frac{\eta_{read}}{\alpha p_{t}} \frac{A_{sub} k_b T_N}{2\pi f_0}} \frac{N_0 \lambda_{pb}}{\tau_{sub} S_1(f_0, T)} \sim 10 - 20 \text{ eV}$

KID index

70

Scale up to O(2.5) cm-thick substrates

1] R. Agnese, et. al. (SuperCDMS Collaboration), Phys. Rev. D 95, 082002 (2017) [2] D. C. Moore, et. al., Appl. Phys. Lett. 100, 232601 (2012) [3] O. Noroozian, el. al., IEEE TMTT 60, 5, 1235 (2102) [4] E. S. Battistelli, et. al., Eurp. Phys. J. C75, 8, 353 (2105)

