

XMASS A Dark Matter Search Experiment with Liquid Xenon

Hiroyuki Sekiya for XMASS collaboration Kamioka Observatory, ICRR & Kavli IPMU University of Tokyo July 18, 2017 Kurume City Plaza LTD17

Contents

- NLD?
- The XMASS experiment
- Recent dark matter results

 WIMPs search by fiducialization
 Annual modulation search

 Summary

New results ! New results !

Not "LTD", it's "NLD" Relatively low temperature detector...

Noble gas interaction process

Hiroyuki Sekiya

LTD17 Kurume, Japan

July 18 2017

Current Status and future of Direct Dark Matter Search

XENON1T

 LUX, PandaX-II

All of them are "NLD"

DARWIN, DarkSide-20k, XENONnT LZ

Hiroyuki Sekiya

LTD17 Kurume, Japan

July 18 2017

Why are noble liquids good for DM searches?

- Both scintillation and ionization signals are detectable.
 - Excitation/ionization ratio provides electron/nuclear recoil separation \rightarrow Active BG rejection
- Large mass/scalability
- Large mass number (Xe)
- →Passive BG rejection: self shielding by fiducialization
- In situ purification \rightarrow lower BG

How to use noble liquids; 3 concepts

1 phase(L) TPC Original concept of NLD High E application w/ Ar ICARUS/DUNE

2 phase(L+G) TPC Low E application w/ Xe The most successful DM detector so far

1 phase(L) Scintillator Simplest for scalability Also sensitive to ionization, in a sense, through the recombination process

Hiroyuki Sekiya

The XMASS project

Multipurpose low BG experiment with single phase (liquid) Xe

- Xenon MASSive detector for Solar neutrino (pp/7Be)
- Xenon neutrino MASS detector (double beta decay)
- Xenon detector for Weakly Interacting MASSive Particles(DM)
- Located underground in Kamioka mine at a 2700 m.w.e. depth.

XMASS detector

- 832 kg of liquid xenon (-100 °C) target
 - Total 1050kg
- 642 2-inch hexagonal PMTs on 80cm pentakisdodecahedron
 - Photocathode coverage 62.4%
- $10m \ x \ \phi 10m$ water shield for external BG
 - 72 20-inch PMTs

Hiroyuki Sekiya

LTD17 Kurume, Japan

July 18 2017

Photo coverage 62.4%

XMASS physics results Not only DM

β/γ sensitive, but can be cut by fiducialization

- Self-shielding: Traces of γ-rays from PMTs high atomic number (Z=54) and high density (2.9g/cm3)
 Fiducial volume R<20cm (97kg)
- Event vertex position and energy are reconstructed using number of PE in each PMT $L(\mathbf{x}) = \prod_{i=1}^{642} p_i(n_i)$

⁵⁷Co calibration Calibration spectrum

 P_i (n) : probability that the i-th PMT detects n PE

LTD17

Light Yield: ~15 photoelectron/keV

> ⁵⁷Co calibration Vertex reconstruction

> > Julv 18

2017

Kurume, Japan

10

Background understanding w/o fiducialization

- The energy spectrum above 30 keVee was fitted with MC under the constraints by other direct RI measurements.
 - All the detector material were measured by Ge detectors before installation.
 - α events were selected using scintillation decay time. \rightarrow ²¹⁰Pb in PMT/copper
 - ²¹⁰Pb (~20 mBq/kg) in the bulk of oxygenfree copper was identified by the low background alpha-particle counter (XIA Ultra-Lo-1800)
- Understood the BG within 10% error!
 - Most of the BG are from PMTs

Julv 18

2017

Energy spectrum (<30keV) after fiducialization

- 706 live days taken in Nov. 2013 Mar. 2016
- Fiducial mass 97kg (R<20cm)

WIMP search region (2-15keVee)

Main BG <15keVee
 Misreconstructed surface events
 ²¹⁰Pb in the copper bulk
 γ-rays from PMTs

 Internal RIs dominate >15keVee Rn, Kr, etc …

Neutrons, alpha-rays are negligible

• Dominant systematic uncertainty Condition of detector inner surface (gap size, surface roughness)

Hiroyuki Sekiya

2013-2016 Dark Matter search results

10⁻³⁹

AMA/LIBRA(Na

- The energy spectrum at 2-15 keVee is fitted with signal + BG
- Systematic uncertainties are taken into account as nuisance parameters.
- 90% CL upper limit on spinindependent WIMP-nucleon cross section is derived.

- Updated annual modulation search in XMASS
 - 800 live days x 832 kg =1.82 ton year (3 cycle)
 - Trigger threshold 0.6 keVee
 - Look for event rate modulation not only for nuclear recoil but also for e/γ events

ullet

Detector stability; New run2 period

Weekly ⁵⁷Co 122keV calibration

Stability correction factor

Total size of systematic error

Hiroyuki Sekiya

Model independent analysis

$$\chi^2 = \sum_{i}^{E_{bins}t_{bins}} \left(\frac{(R_{i,j}^{data} - R_{i,j}^{ex})^2}{\sigma(\operatorname{stat})_{i,j}^2 + \sigma(\operatorname{sys})_{i,j}^2} \right) + \alpha^2,$$
$$R_{i,j}^{ex} = \int_{t_j - \frac{1}{2}\Delta t_j}^{t_j + \frac{1}{2}\Delta t_j} \left(\varepsilon_i^s A_i \cos 2\pi \frac{(t-t_0)}{T} + \varepsilon_i^b(\alpha) (B_i t + C_i^b) \right) dt,$$

t₀: June 2nd *Bi,Ci* unmodulated components

• Modulation Amplitude Ai

July 18

Japan

2017

16

WIMP assumed analysis

Hiroyuki Sekiya

Kurume, Japan

R&D for Future-TPCs

- Single phase TPC
 - Charge amplification in Liq.
 - For beyond 2 phase det.
 - Multiple drift region(for larger)
 - No level control(for more stable)
- Spherical TPC

- Charge

- Trying to put multi-ball electrode in XMASS
 - To produce higher drift field

Collaboration with I.Giomataris/NEWS-G

2 phase TPC
 – New concepts

Hiroyuki Sekiya

LTD17 Kurume, Japan

July 18 2017

Summary

- XMASS is a multi-purpose experiment using single phase NLD technology
 - Lowest β/γ BG detector without PID
- WIMP search by fiducialization
 - 706 live days x 97 kg fiducial mass
 - Limit on SI WIMP-nucleon cross section σ <2.2x10⁻⁴⁴ cm² for 60 GeV/c²
- Annual modulation search
 - With 3-years of data, no significant modulation was observed.
 - σ <1.9x10⁻⁴¹ cm² for 8GeV/c², excluded DAMA region
- For future of XMASS
 - R&Ds for TPC are ongoing.

Also please visit poster PE-38

- JinA Jeon "Directionality study of phonon-scintillation signals from a zinc tungstate crystal"
 - Direction sensitive Dark Matter LTD with MMC readout

