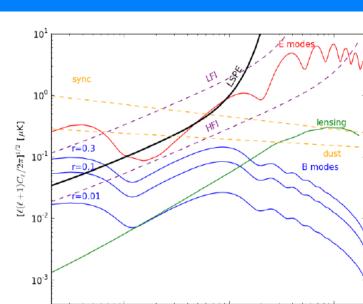
Critical temperature tuning of Titanium thin films for CMB detectors on the SWIPE/LSPE experiment

D. Vaccaro^{a,d}, B. Siri^{b,e}, A.M. Baldini^a, M. Biasotti^e, F. Cei^{a,c}, V. Ceriale^{b,e}, M. de Gerone^b, L. Galli^a, G. Gallucci^b, F. Gatti^{b,e}, M. Grassi^a, D. Grosso^{b,e}, D. Nicolò^{a,c}, M. Piendibene^a, G. Signorelli^a and F. Spinella^a.

^aINFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy ^bINFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy ^cDipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy ^dDipartimento di Fisica, Università di Siena, Strada Laterina 8, 53100 Siena, Italy ^eDipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy

ABSTRACT


Cosmic microwave background (CMB) B-mode polarization detection is a major challenge in modern cosmology, which future experiments are going to undertake either from the ground, on balloons or on satellites. Among these, the SWIPE/LSPE balloon-borne experiment aims at searching for B-modes exploiting the re-ionization peak at large angular scales. Detectors in SWIPE are Transition Edge Sensor (TES) spider-web bolometers, requiring $T_c > 500$ mK. We found evidence that temperature control during deposition and post annealing of Titanium thin films allows the tuning of critical temperature. Titanium is a Type I superconductor with T_c \approx 390 mK. In this paper we present a

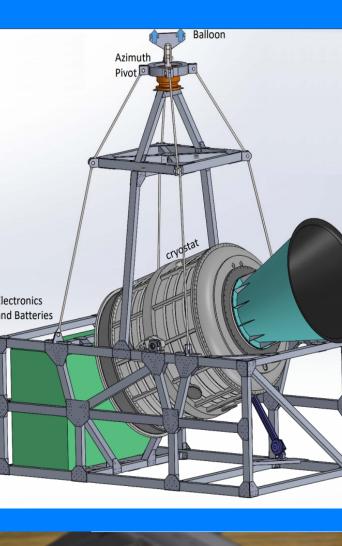
systematic study done on thermal treated Titanium films, showing that higher T_c can be achieved, in a range suitable for SWIPE.

The SWIPE/LSPE experiment

The Large Scale Polarization Explorer¹ (LSPE):

- is a mixed ground/balloon-borne mission aimed at measuring the CMB **B-mode** polarization at large angular scales.
- will improve the limit on the tensor-toscalar ratio down to r = 0.03 at 99.7% CL.
- will be launched from Longyearbyen (Svalbard Islands) in December 2018, for a 15 days-long circumpolar flight during the polar night (40 km of altitude, \approx -80 °C).
- is composed of two instruments: STRIP (installed on ground at Tenerife) and SWIPE (on board).

Ipper left: power spectrum of CMB arization (E-modes and B-modes), (synchrotron nterstellar dust) and spurious B-modes due to gravitational lensing. In black is eported the sensitivity limit of LSPE.


Upper right: sketch of the gondola of SWIPE/LSPE.

Lower left: sketch of the cryostat of SWIPE/LSPE, hosting the rotating HWP, the beam splitter and the two ocal planes cooled at 300 mK.

Lower middle: table with the main (theoretical) parameters for the TESs to be used on SWIPE.

Lower right: one of the multimode horns to be mounted on the focal plane. The dismounted backshort shows the housing for the spiderweb TES.

Frequency (GHz)	140	220	240
$\mathcal{N}_{\mathrm{modes}}$	12	30	34
$NEP_{ph}(W/\sqrt{Hz})$	6.4×10^{-17}	5.5×10^{-17}	11.5×10^{-1}
$NEP_{th}(W/\sqrt{Hz})$	4.0×10^{-17}	3.2×10^{-17}	5.5×10^{-17}
Popt (pW)	11	5	20
P _{sat} (pW)	28	15	50
G (pW/K)	220	120	400

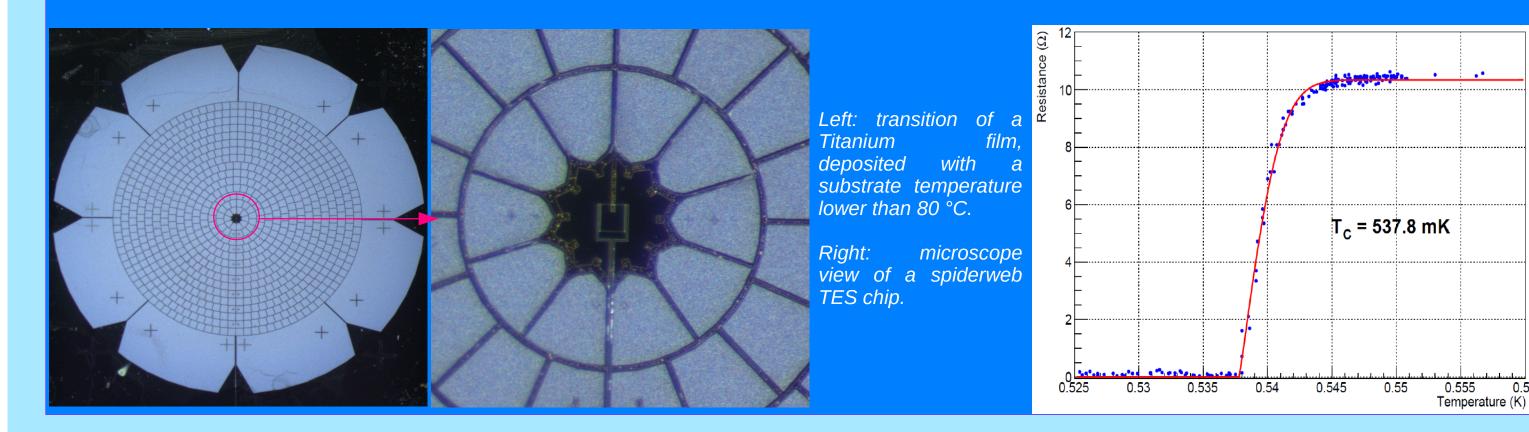
The Short Wavelength Instrument for the **Polarization Explorer² (SWIPE)**: is composed of two focal planes with 326 spiderweb TES bolometers cooled at 300 mK. exploits multi-mode horns to convoy radiation.

 detectors are Titanium Transition Edge Sensors with the requirement of $T_c > 500$ mK, due to the

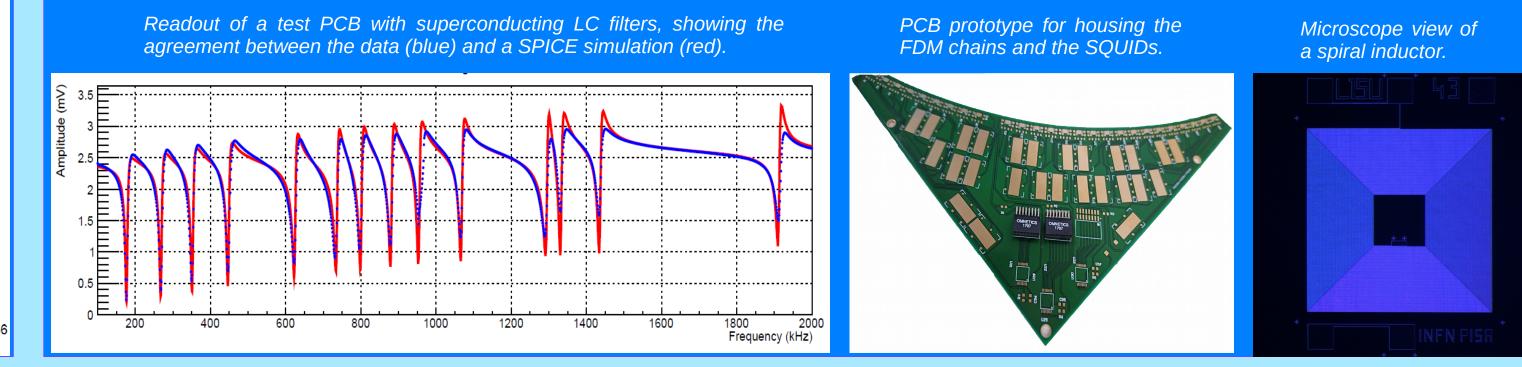
increased optical power collected by the multimode horns (see Table³), since at equilibrium:

 $T_{eq} = T_{bath} + (P_{opt} + P_{Joule})/G$

readout is achieved by means of a 16-channel **FDM**, putting a superconducting LC filter in series with each TES. FDM chains are hosted on custom PCBs on the focal planes. hot electronics provides comb generation, demodulation and data reduction.


Transition Edge Sensors

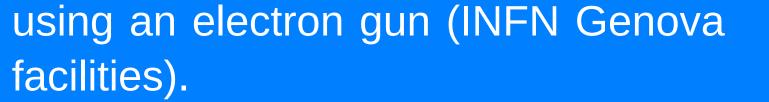
TES bolometers for SWIPE are fabricated at INFN Genova facilities⁴:

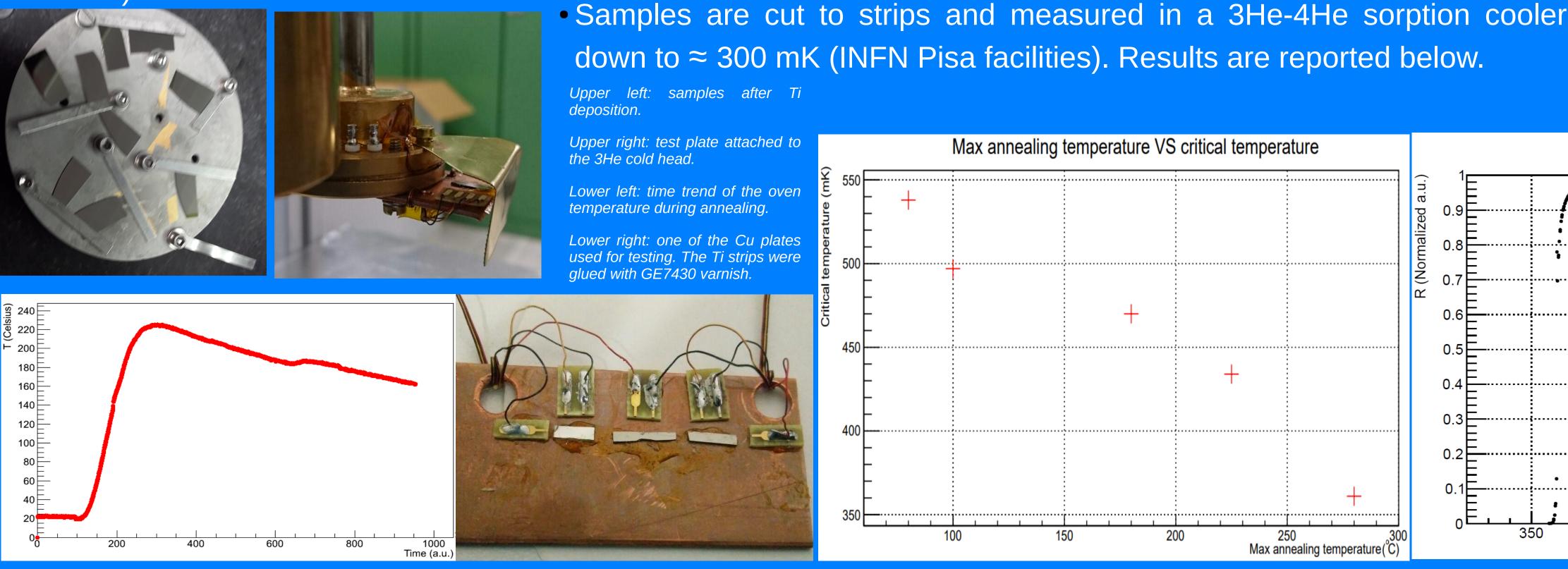

TES detectors readout

Readout electronics based on frequency domain multiplexing is being

- the spiderweb structure of the SiN absorber reduces the energy release from cosmic rays.
- fabrication requires several steps (resist coating, optical lithography, e-gun) and sputtering deposition, ICP-RIE etching, chip release and cleaning).
- the Titanium film is deposited in a temperature-monitored environment to maintain its T_c above 500 mK, as required.

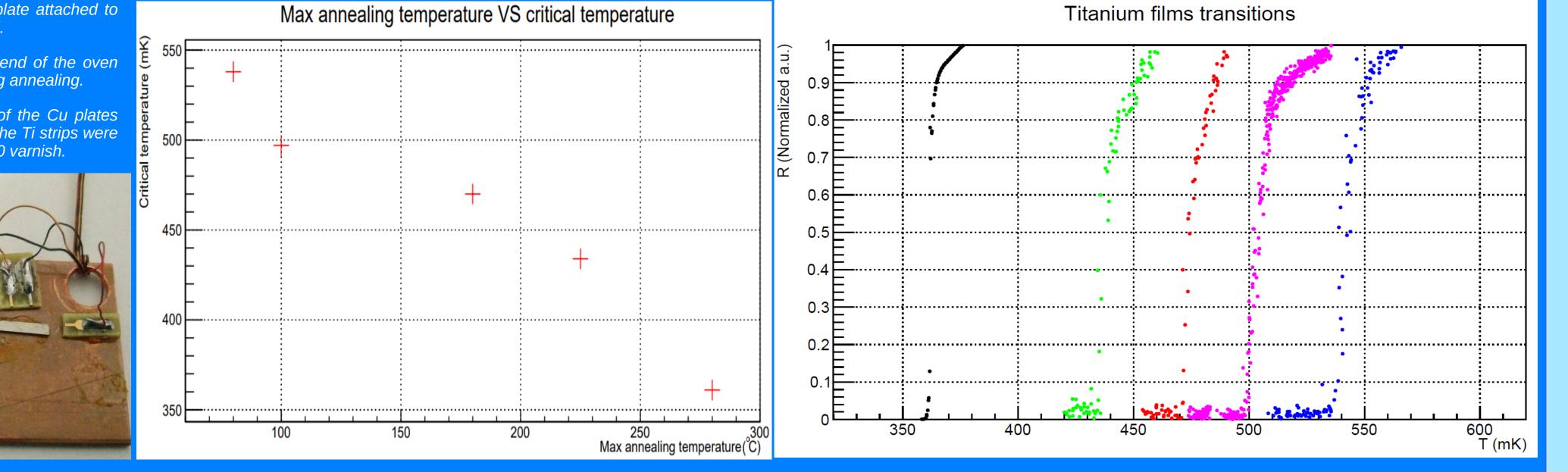
- designed, realized and tested at INFN Pisa⁵:
- superconducting LC filters are fabricated at NEST-CNRnano⁶ facilities in Pisa, using optical lithography and Niobium sputtering deposition.
- testing of the FDM chain is performed at INFN Pisa facilities, including the readout with SQUIDs and hot electronics.
- first results prove that we can pack 16 resonances in the range 200 kHz ÷ 2 MHz and that inter-channel crosstalk is below 0.3% level⁷.


Titanium T_c tuning


Titanium thin film deposition • SiN – SiO₂ – Si clean substrate. substrate temperature during process less than 80 °C. • 65 nm of Titanium deposited in 90 s

- **Post annealing treatment** annealing performed in an oven with Argon atmosphere to avoid Titanium
 Titanium
 Tensor decreases
 With the oxidation (INFN Genova facilities). each sample is thermally treated with a different maximum temperature in the range 80 °C ÷ 270 °C.
- the entire annealing process requires 6-8 hours, including warming and

Conclusions


- increase of annealing temperature.
- a dedicated thermal process allows to set a particular T_c .

slow cooling.

- it is possible produce TES bolometers with a T_c suitable for LSPE.
- further investigations are in progress to understand the crystallographic motivations behind this phenomenon.

CONTACTS davide.vaccaro@pi.infn.it; beatrice.siri@ge.infn.it

17th International Workshop on Low Temperature Detectors Kurume City, Fukuoka Japan, 17-21 July 2017

REFERENCES ¹Aiola, S. *et al.*, (LSPE Collaboration) "The Large-Scale Polarization Explorer", arXiv:1208.0281, (2012); de Bernardis, P. et al., "SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer", Proc. SPIE 8452, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation fo "Multi-mode TES Bolometer Optimization for the LSPE-SWIPE Instrument", J. Low Temp. Phys., (2015); Biasotti, M. et al., "Fabrication and Test of Large Area Spider-Web Bolometers for CMB Measurements", J. Low Temp. Phys. (2015) 1–5; /accaro D. et al., "The FDM readout system for the TES bolometers of the SWIPE instrument on the balloon-borne LSPE experiment", Proc. SPIE 9914, Millimeter, Submillimeter, and Fa Infrared Detectors and Instrumentation for Astronomy VIII, 99143C; ⁶National Enterprise for nanoScience and nanoTechnology, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; ⁷Vaccaro D.*et al.*, International Superconducting Electronics Conference 2017, *proceedings in preparation*.