

Low temperature detectors for neutrinoless double beta decay experiments (LTDs for $0\nu\beta\beta$)

Yong-Hamb Kim

김용함 (金容菡)

Oliviero Cremonesi INFN, Sezione di Milano Bicocca Stefano Dell'Oro Virginia Tech. Andrea Giuliani CNRS/CSNSM, Orsay Stefano Pirro INFN-LNGS Sei Yoshida Osaka Univ.

for sharing their presentation materials and helpful discussions.

Goal of my presentation

I try to explain

- Importance of $0\nu\beta\beta$ process in physics
- What we do with LTDs for 0vββ searches covering basics only.

I will not go in details of the latest results of the projects.

Outline

- Intro
 - $-0\nu\beta\beta$ & ν
 - Detection sensitivities
- LTDs for $0\nu\beta\beta$
 - Sensors & detection technologies
 - LT $0\nu\beta\beta$ projects
- Summary

$0\nu\beta\beta$ and ν (brief intro.)

- 0νββ decay can only happen if neutrinos are massive Majoanana particles (own anti-particles).
 - ✓ fundamental understanding particle physics
 - ✓ $0\nu\beta\beta$ search is the only practical technique to answer.
- The $0\nu\beta\beta$ decay rate $(T^{0\nu})$ is closely related to the mass of neutrinos.
 - ✓ Most sensitive measurement method (if Majorana particle)
- The $0\nu\beta\beta$ decay can only happen if Lepton number conservation is violated.
 - ✓ Leptogenisis ?
 - ✓ New physics ?

Double beta decay

$$(A, Z) \to (A, Z+2) + 2e^- + 2\bar{\nu}_e$$

- 2nd order weak process
- ββ(2ν) decay is detectable if 1st
 order β decay is not allowed.

ββ-decay nuclei with Q > 2 MeV	Q (MeV)	Abund. (%)
⁴⁸ Ca → ⁴⁸ Ti	4.271	0.187
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	2.040	7.8
⁸² Se → ⁸² Kr	2.995	9.2
⁹⁶ Zr → ⁹⁶ Ru	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.6
$^{110}\mathrm{Pd} \rightarrow ^{110}\mathrm{Cd}$	2.013	11.8
$^{116}Cd \rightarrow ^{116}Cd$	2.802	7.5
124 Sn \rightarrow 124 Ge	2.228	5.8
$^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe}$	2.528	34.2
¹³⁶ Xe → ¹³⁶ Ba	2.479	8.9
150 Nd $\rightarrow ^{150}$ Sm	3.367	5.6

Double beta decay w. & wo. ν emission

2ν mode

- A conventional
- 2nd order weak process in NP

Double beta decay w. & wo. ν emission

2v mode

- A conventional
- 2nd order weak process in NP

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$ ββ2ν 0.5 $(T_1 + T_2)/Q_{BB}$

0v mode

• A hypothetical process only if $m_v \neq 0, \ \overline{v} = v, \ |\Delta L| = 2$

$$(A,Z) \to (A,Z+2) + 2e^{-1}$$

7

Double beta decay w. & wo. ν emission

2v mode

- A conventional
- 2nd order weak process in NP

 $0v \mod e$

• A hypothetical process only if $m_v \neq 0$, $\overline{v} = v$, $|\Delta L| = 2$

Some history about $\beta\beta$ decay

M.Goeppert-Mayer, Phys. Rev. 48 (1935) 512

- ✓ The study of nuclear structure expected that the <u>2 neutrino mode</u> would have half lives in excess of 10²⁰ years
- ✓ First observed directly in 1987. ✓ Background: $T_{1/2}(U, Th) : 10^{10} \text{ y} \sim T_{\text{Universe}}$ (the age of the Universe) ✓ $T_{1/2}(2\nu\beta\beta) : \sim 10^{10} \text{ T}_{\text{Universe}}$

- E. Majorana, NuovoCimento14 (1937) 171 G. Racah, NuovoCimento14 (1937) 322
- ✓ The possibility of <u>neutrinos-less decay</u> was discussed in 1937
- ✓ Now, we want to look for a process with $T_{1/2}(0\nu\beta\beta)$: $10^{16\sim18} T_{\text{Universe}}$

Neutrinoless double beta decay (0vββ)

$0\nu\beta\beta$ discovery answers

- Majorana $(v = \overline{v})$ particles not Dirac $(v \neq \overline{v})$
- Mass of neutrinos ($1/T_{1/2}^{0v} \propto m_v^2$)
- Lepton number violation

$0\nu\beta\beta$ decay rate

$$\Gamma_{0\nu} = 1/T_{1/2}^{0\nu} = G_{0\nu} |M_{0\nu}|^2 m_{\beta\beta}^2$$

<standard process>

✓ G_{0v} : Phase space factor. : Calculable (~ Q⁵),

Atomic phys.

 \checkmark $|M_{0v}|$: Nuclear matrix element. Nuclear physics

Hard to calculate. Uncertain by ~2 times

 $\mathbf{m}_{\beta\beta}$: Effective neutrino mass, where the interesting physics (in particle) lies.

Neutrino mixing, mass, and $0\nu\beta\beta$

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{m 1} \\ \mathbf{v}_{m 2} \\ \mathbf{v}_{m 3} \end{pmatrix}$$

weak interaction eigenstate mass eigenstate

v oscillation

Neutrino mixing, mass, and $0\nu\beta\beta$

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{m1} \\ \mathbf{v}_{m2} \\ \mathbf{v}_{m3} \end{pmatrix} | \mathbf{v}_{i}(t) \rangle = e^{-i(E_{i}t - \vec{p}_{i} \cdot \vec{x})} | \mathbf{v}_{i}(0) \rangle$$
Evolve in time with $m_{i} \& E$

weak interaction eigenstate

eigenstate

Neutrino mixing, mass, and $0\nu\beta\beta$

$$m_{\beta} = \sqrt{\sum_{i}^{3} \left| U_{ei} \right|^2 m_i^2}$$

real v emission

$$\sum = \sum m_i$$

Yong-Hamb Kim

$0\nu\beta\beta$ sensitivity region: "usual" plot

$$m_{\beta\beta} = \left| \sum U_{ei}^2 m_i \right|$$

Parameters with known, limit and unknown values

$$1/T_{1/2}^{0v} \propto m_{\beta\beta}^2$$

The smaller $m_{\beta\beta}$ is the more difficult to discover $0\nu\beta\beta$.

- ✓ The mass hierarchy (ordering) matters.
- ✓ The lightest m_i also matters.

Physics uncertainties after $0\nu\beta\beta$ discovery

Master formula of $(A, Z) \rightarrow (A, Z + 2) + 2e^{-1}$ $\Gamma_{0\nu} = G_{0\nu} |M_{0\nu} \cdot \eta|^2$ η : physics processes leading to Lepton number violation. Standard interpretation : Only massive Majorana v's lead to $0\nu\beta\beta$ $\Gamma_{0\nu} = G_{0\nu} |M_{0\nu}|^2 m_{\beta\beta}^2$

- Experimental 0νββ discovery demonstrates massive Majorana particles and Lepton number violation.
- Other mechanisms exist leading $0\nu\beta\beta$ in the same order as light ν exchange mechanism,
 - Light v exchange, Heavy v exchange,
 - R-parity violating susy,
 - Mechanisms with RHC, Majorons, etc.
- Model dependent M_{0v} (NME) complication

Physics uncertainties after $0\nu\beta\beta$ discovery

Master formula of $(A, Z) \rightarrow (\overline{A, Z+2}) + 2e^{-1}$ $\Gamma_{0\nu} = G_{0\nu} |M_{0\nu} \cdot \eta|^2$ η : physics processes leading to Lepton number violation. Standard interpretation : Only massive Majorana v's lead to $0\nu\beta\beta$ $\Gamma_{0\nu} = G_{0\nu} |M_{0\nu}|^2 m_{\beta\beta}^2$

- Experimental 0νββ discovery demonstrates massive Majorana particles and Lepton number violation.
- Other mechanisms exist leading $0\nu\beta\beta$ in the same order as light ν exchange mechanism,
 - Light v exchange, Heavy v exchange,
 - R-parity violating susy,
 - Mechanisms with RHC, Majorons, etc.
- Model dependent M_{0v} (NME) complication

→ 0vββ discovery from one nucleolus is not enough for full understanding.

- Theorists claim
- \checkmark 0vββ is not just a neutrino mass experiment.
- **\checkmark** Full understanding requires 0vββ results in serval isotopes.

Detection Sensitivities

Yong-Hamb Kim

$0\nu\beta\beta$ decay rates: Simplified

Background matters.

Experimental Sensitivity of $T_{1/2}$ ($0\nu\beta\beta$)

For sizeable background case:

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A} \varepsilon \frac{M \cdot \text{time}}{n_{CL}}$$

Strategies to increase sensitivity

$$T_{1/2}^{0v} \propto \sqrt{\frac{M \cdot \text{time}}{\text{bkg} \cdot \Delta E}}$$

 $T_{1/2}^{0v} \propto M \cdot \text{time}$

<background-free case>

- ✓ Increase *M* : Large detector mass, Enriched $\beta\beta$ elements ← budget
- ✓ Increase 'time' : up to a few years, Not very practical to increase sensitivity $T_{1/2}$
- ✓ Smaller ΔE : Better energy resolution ← detector tech.
- ✓ Bkg. : Minimize background events in ROI
 - Underground facility
 - Rn control
 - Neutrons, Long-lived cosmogenics
 - Natural occurring radioactive materials (U Th)
 - Environmental gammas
 - $\beta\beta(2\nu)$ signals, energy and timing resolution needed
 - Active discrimination method (PSD, H/L ratio, Cherenkov)

LTDs for $0\nu\beta\beta$ search

Sensors & Detection Technologies

Low Temperature Detectors

"Calorimetric measurement of heat signals at mK temperatures"

Energy absorption \rightarrow Temperature

Choice of thermometers for $0\nu\beta\beta$ searches

- Thermistors (NTD Ge) CUORE, CUPID
- TES (Transition Edge Sensor) Light detector
- MMC (Metallic Magnetic Calorimeter) AMORE, LUMINEU
- KID (Kinetic Inductance Device) CALDER
- etc.

Thermistors

- Doped semiconductors
 - Neutron transmuted doped (NTD) Ge thermistors
 - Ion implantation doped Si thermistors
- $R(T) : 1 \text{ M}\Omega \sim 100 \text{ M}\Omega$
- Readout: (cold) JFET
- High resolution + High linearity + Wide dynamic range + Absorber friendly
- Require very low bias current(sensitive to micro-phonics and electromagnetic interference), Slow response

Metallic Magnetic Calorimeter (MMC)

 $I_0+\delta I$

 Paramagnetic alloy in a magnetic field Au:Er(300-1000 ppm), Ag:Er(300-1000 ppm)

Absorber

Thermal link

Heat bath

to SOUID

- \rightarrow Magnetization variation with temperature
- Readout: SQUID
- High resolution + High linearity + Wide dynamic range + Absorber friendly + No bias heating + Relatively fast
- More wires & materials needed for SQUIDs and MMCs,

-MMC

M

Phonon collector

gold wires

Sensor performance

"Superior dynamic range with high resolution"

✓ A test result with an MMC.

✓ NTD Ge thermistors also have similar performance.

Resolution matters.

Simultaneous phonon-scintillation detection

✓ Scintillating crystal as target material → Active bkg. Rejection

Many $\beta\beta$ nuclei test $Q_{\beta\beta} > 2.6$ MeV possible for Ca, Se, Mo \rightarrow Low env. γ bkg. 10⁵ ⁷⁶Ge ¹¹⁶Cd ¹³⁰Te 100 Mo 10⁴ Counts 10³ 10² Environmental y bkg. @LNGS 10¹ 2200 3000 2600 Energy [keV] from S. Pirro' talk in DBD Shanghai 2017

Use of Cherenkov light

- ✓ TeO₂ does not scintillate, but MeV electrons (not alphas) produce Cherenkov light in TeO₂.
- \checkmark ~ 300 eV visible photons are emitted at Q_{ββ} (Tabarelli et al, app 2010)

< TeO₂ in a CRESST setup >

6000

Light detector with phonon amplification

from A, Giuliani' talk in DBD Shanghai 2017

α/β separation

LT 0vββ Projects

- ✓ This is a short introduction for LT 0νββ searches.
- ✓ One should refer relevant talks and posters for details.
- ✓ The summary may not cover all of those $0\nu\beta\beta$ project using LTDs.

30 years of $0\nu\beta\beta$ searches **(a)**LNGS

fig. from S. Dell'Oro' talk in DBD Shanghai 2017

TeO₂ for ¹³⁰Te

ββ-decay nuclei with Q > 2 MeV	Q (MeV)	Abund. (%)
⁴⁸ Ca → ⁴⁸ Ti	4.271	0.187
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	2.040	7.8
⁸² Se → ⁸² Kr	2.995	9.2
96 Zr \rightarrow 96 Ru	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.6
$^{110}\mathrm{Pd} \rightarrow ^{110}\mathrm{Cd}$	2.013	11.8
$^{116}Cd \rightarrow ^{116}Cd$	2.802	7.5
124 Sn \rightarrow 124 Ge	2.228	5.8
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2.528	34.2
¹³⁶ Xe → ¹³⁶ Ba	2.479	8.9
$^{150}\text{Nd} \rightarrow ^{150}\text{Sm}$	3.367	5.6

¹³⁰Te

- ✓ Q = 2528 keV (between 208 Tl line (2615 keV) and its Compton edge)
- ✓ Large natural abundance : 34.2%

TeO₂ crystals

- ✓ Debye Temp. ~ 230 K
- \checkmark High crystal quality can be achieved.
- ✓ Low radio contaminants
- > Do not scintillate

From CUORICINO, To CUORE, & ..

CUORE goal

Bkg.: 0.01 count/keV/kg/y Resol.: 5 keV FWHM 5-year run: $T_{1/2}(0v) > 9 \times 10^{25}$ y (exclusion, 90% CL) $\sim 4 \times 10^{25}$ y (3 σ discovery potential) $m_{\beta\beta} < (60-160)$ meV CUORE will continue with CUPID.

CUPID: Cuore Upgrade with Particle ID

¹³⁰Te, ⁸²Se, ¹⁰⁰Mo: each in ton scale

Bkg.: 0.1 count/keV/ton/y

Resol.: < 10 keV FWHM

CUORE infra structure

R&D toward CUPID

FIG. 1: Scheme of the R&D detector activities for CUPID

from arXiv:1504.03612

CUPID-0 with Zn⁸²Se

NO other lines (e.g.²¹⁴Bi) are (yet) visible in the spectrum !!!

The β/γ background in the ROI <u>is not yet completely evaluated</u> since some of the fundamental cuts (delayed ²¹²Bi α -line, anti-coincidences, linearization of shape parameters are not yet fully operative and debugged)

R&D with many scintillating crystals

from S. Pirro' talk in DBD Shanghai 2017

CUPID-pilot experiment

Follow-up to CUORE with background improved by a factor 100

- Reduce / control background from materials and from muon /neutrons
- Optimize the enrichment-purification-crystallization chain
- > Improve detector technology to get rid of α / surface background

CUPID-Mo (←LUMINEU)

¹⁰⁰Mo ✓ Q = 3034 keV > ²⁰⁸Tl line (2615 keV) ✓ Natural abundance : 9.7% ✓ T_{1/2} (2ν) = 7.1 10¹⁸ y : the largest ββ decay rate

ZnMoO₄ : Initial choice

Li₂MoO₄ : Selected for a pilot experiment

Li₂¹⁰⁰MoO₄

Multiple tests with natural and enriched crystals (2014-2017) in LSM and LNGSwith outstanding results in terms of:http://arxiv.org/abs/1704.01758

Reproducibility \rightarrow excellent performance uniformityEnergy resolution \rightarrow \sim 4-6 keV FWHM in Rol α/β separation power \rightarrow > 99.9 %Internal radiopurity \rightarrow < 5 - 10 µBq/kg in ²³²Th, ²³⁸U; < 5 mBq/kg in ⁴⁰K

Compatible with b ≤ 10⁻⁴ [counts/(keV kg y)]

CUPID-Mo performance

from A, Giuliani' talk in DBD Shanghai 2017

CUPID-Mo begins

CUPID-0/Mo Phase I (20 crystals):

- ➤ 20 ¹⁰⁰Mo-enriched (97%) Li₂MoO₄ presently in LSM (Ø44×45 mm, 0.21 kg each; 4.18 kg total)
 ⇒ 2.34 kg of ¹⁰⁰Mo (1.37×10^{25 100}Mo nuclei)
- > 20 Ge light detectors (Ø44×0.175 mm)+SiO
- EDELWEISS set-up @ LSM (France)

START DATA TAKING: December 2017

CUPID-0/Mo Phase II (20+20 - or more - crystals):

- At least additional 20 Li₂¹⁰⁰MoO₄
- CUPID-0 set-up in hall A @ LNGS (Italy)

Yong-Hamb Kim

The AMoRE Project

AMoRE

100Mo

- ✓ Q = 3034 keV > 208 Tl line (2615 keV) ✓ Natural abundance : 9.7%
- \checkmark T_{1/2} (2 ν) = 7.1 10¹⁸ y : the largest $\beta\beta$ decay rate
- ⁴⁰Ca¹⁰⁰MoO₄ : enriched ¹⁰⁰Mo and depleted ⁴⁸Ca : Selected for a pilot and AMoRE-1
 - : High Debye temperature: $T_D = 438$ K

 $Li_2^{100}MoO_4$, $Na_2^{100}MoO_4$: Possible option for AMoRE-II

Schedule of the AMoRE project

- MMC technology for heat and light measurement
- Crystal: ⁴⁰Ca¹⁰⁰MoO₄, doubly enriched scintillating crystals (Pilot & I) For Phase II: X¹⁰⁰MoO₄ (X: Li, Na, ⁴⁰Ca, Zn or Pb)
- Zero background condition in ROI
- Shield: Lead (Pilot, I), Water (II)
- Location: Y2L (Pilot, I) and a new deeper place (ARF at Handuk)

	Pilot	Phase I	Phase II
Mass	1.8 kg	~5 kg	~200 kg
MMC Channel	12	28-36	1000
Required background (ckky)	0.01	0.001	0.0001
Sensitivity($T_{1/2}$) (year)	~10 ²⁴	~10 ²⁵	~5×10 ²⁶
Sensitivity $(m_{\beta\beta})$ (meV)	380-720	120-230	17-32
Location	Y2L	Y2L	ARF
Schedule	2017	2018-2019	2020-2022

Shields & Cryostat for AMoRE Pilot & I

150

0

AMoRE pilot : 5 + 1 crystals

All are installed in a dry dilution refrigerator in Y2L. Recently added another crystals: total mass ~ 1.8 kg

L/H ratio Light/Heat Ratio (a.u.) 000 000 2000 4000 6000 8000

Energy (keVee)

8000

no muon-veto applied

CANDLES experiment

CANDLES is the project to search for Ονββ decay of ⁴⁸Ca (Q_{ββ} = 4.27 MeV)
 The CANDLES-III detector is currently installed in Kamioka Underground.

- CaF₂ Module
 - CaF₂(Pure); 96 Crystal → <u>305 kg</u>
 - WLS Phase ; 280 nm → 420 nm
 - Thickness ; 5 mm
 - Mineral Oil+bis-MSB (0.1 g/L)

4π Active shield

Installed in 2016

Highest Q-valued

- Liquid Scintillator (LS)
 - 1.37 m ϕ x 1.4 m height
 - Volume ; 2.1 m³ (1.65 ton)
 - Composition
 - Solvent ; Mineral Oil(80%) + PC(20%)
 - WLS's ; PPO (1.0g/L) + bis-MSB (0.1g/L)
- PMTs + Light pipe
 - 13 inch (Side) ; x 48
 - 20 inch (Top and Bottom) ; × 14
 - Reflector Film : reflectivity ~93%
- Toward "Background Free Measurement"
 - $\bullet~$ Designed the shields $\rightarrow~$ finished the construction.
 - Lead Bricks (10 ~ 12 cm thick)
 - Boron loaded sheet
 - Number of BG after shield installation estimated
 - Rock : 0.34±0.14 event/year
 - Tank: 0.4±0.2 event/year

LT-CANDLES

⁴⁸Ca ✓ Q = 4271 keV. The highest Q ✓ Natural abundance : 0.187% CaF₂, CaF₂(Eu)

2 cm cube of CaF_2 for the first try with NTD Ge thermistors in Osaka University. Fridge and measurement system were developed in Uinv. of Tokyo

Detector holder

Light detector (Ge wafer)

Importance of 0\nu\beta\beta process in physics

- $0\nu\beta\beta$ search is the direct test of ν for massive Majoanana particles •
- The $0\nu\beta\beta$ decay rate $(1/T^{0\nu})$ is closely related to the mass of neutrinos. •
- The $0\nu\beta\beta$ decay can only happen if Lepton number conservation is • violated.
- \checkmark 0v $\beta\beta$ is not just a neutrino mass experiment.
- \checkmark Full understanding requires 0vββ results in serval isotopes.

Prof. Steve Olsen, a particle physicist (former spokesperson of Belle) : Yong-Hamb, you seem too modest about $0\nu\beta\beta$ goals. If, indeed, you see a signal that would be the "discovery of the century" or " biggest breakthrough in particle physics since quarks" or something of that scale.

Closing remarks

- \checkmark 0vββ search projects with LT detectors are well established experiments.
- ✓ The technology provides promising performance in energy resolution, background reduction method, and scalability of the detector size.
- ✓ Those LT projects aim to investigate $0\nu\beta\beta$ process in many nuclei.
- ✓ Many $0\nu\beta\beta$ projects exist using tech. other than low temperature. Not just competing with, but try to help each other
- The (LT) 0vββ community has been supportive to second movers like AMoRE.

Thank you for your attention.