# 修士論文

# ASTRO-H 衛星搭載 軟X線分光器 SXS の 波形処理システム PSP の開発

阿部 祐輝

指導教官:石崎 欣尚

首都大学東京大学院 理工学研究科 物理学専攻

2010年1月

目 次

| 第1章       | はじめに                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.1       | X 線天文学                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 第2章       | ASTRO-H 衛星                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 |
| 2.1       | 衛星の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 |
| 2.2       | 搭載検出器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 |
| 2.3       | 期待される成果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13 |
| 笂り咅       | $\mathbf{Y}$ 组艺人力口力口以大一名 SYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 |
| カリ早<br>91 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 |
| ა.1<br>ეე | $ \begin{bmatrix} \mathbf{x} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 |
| ე.∠<br>ეე | $4 \text{ CTDO II SYS} (A-Ray Spectrometer) \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 |
| 5.5       | ASTRO-H SAS (Soft A-ray Spectrometer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 |
|           | 3.3.1 SAS W安水性能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 |
| 2.4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 |
| 3.4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 |
|           | 3.4.1 SpaceWire の特徴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 |
|           | 3.4.2 Remote Memory Access Protocol (RMAP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 |
| 3.5       | 本修士論文の目的....................................                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27 |
| 第4章       | デジタル波形処理システム PSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 |
| 4.1       | PSP の構成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29 |
| 4.2       | PSP の性能要求                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 |
| 4.3       | 10100 (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31 |
| 4 4       | Mission I/O (MIO) $\vec{\pi} - \vec{F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32 |
| 1.1       | 4 4 1 FPGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32 |
|           | 4.4.2 MIOボードの構成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34 |
|           | 4.4.3 XBoy - MIO 間のインターフェース                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34 |
|           | A A A A A A > 1/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 |
| 4.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 |
| 4.0       | Science Main Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 |
| 4.0       | 461 Science <b>デー</b> タの召信                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 |
|           | $4.0.1  \text{Science}  \mathbf{J} = \mathbf{J} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 |
|           | 4.0.2 Science <b>リークの</b> 展開                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41 |
|           | $4.0.3  \mathbf{y} \neq \mathbf{y} \neq$ | 41 |
|           | 4.6.4 クリッノ・チャンネルエラー・Science テータエラーのチェック                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 |
|           | 4.6.6 時間微分の計算                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43 |
|           | 4.6.7 生波形・処埋テータの保存                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44 |
| 4.7       | Science Sub-module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45 |
|           | 4.7.1 ピクセルパルスのトリガ (PXP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45 |

|   |   | 1 |   |  |
|---|---|---|---|--|
|   | 1 | 1 |   |  |
| 1 | - | 1 | ŀ |  |
|   |   | - | • |  |

|      | 4.7.2 ピクセルパルス EDB (Event Dual Buffer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 48 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | 4.7.3 ピクセルノイズのトリガ (PXN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 49 |
|      | 4.7.4 Anti-co パルスのトリガ (ACP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 50 |
| 4.8  | その他のモジュール                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 51 |
|      | 4.8.1 XBox TC Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 51 |
|      | 4.8.2 XBox HK Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 52 |
|      | 4.8.3 Clock Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 52 |
| 4.9  | SpaceCard $\vec{\pi} - \vec{F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 54 |
|      | -<br>4.9.1 SpaceCard ボードの構造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 54 |
|      | 4.9.2 TOPPERS/JSP $\mathbf{D} - \mathbf{\lambda} \mathbf{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 55 |
| 4.10 | SpaceCard でのデジタル波形処理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 56 |
|      | 4.10.1 <b>セカンダリーパルス</b> 検出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 56 |
|      | 4.10.2 グレード付け                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 58 |
|      | 4.10.3 最適フィルタ処理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 59 |
|      | 4.10.4 テンプレート計算                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 61 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 第5章  | MIO - SpaceCard 性能評価試験                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63   |
| 5.1  | MIO – SpaceCard 間通信試験                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 64 |
| 5.2  | XDS – PSP 間のインターフェース試験                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 65 |
|      | 5.2.1 BASE_CLK, SMP_CLK, TLM_CLK $\ldots \ldots \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 66 |
|      | 5.2.2 CMD_ENA & CMD_DAT / SCI_ENA & SCI_DAT / HK_ENA & HK_DAT $% \mathcal{A} = \mathcal{A} =$ | . 67 |
|      | 5.2.3 各信号間のの Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 68 |
| 5.3  | MIO ScienceModule での Science データ取得試験                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 69 |
| 5.4  | SpaceCard 処理速度測定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 70 |
| 5.5  | データ転送速度測定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 71 |
|      | 5.5.1 1 MIO + 1 SpaceCard 構成の場合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 72 |
|      | 5.5.2 1 MIO + 2 SpaceCard 構成の場合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 72 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 第6章  | Xbox-BBM — PSP-BBM 噛み合わせ試験                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75   |
| 6.1  | XBox-BBM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 75 |
| 6.2  | Detector Simulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 76 |
| 6.3  | セットアップ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 76 |
|      | 6.3.1 LVDS 信号線の電圧チェック                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 76 |
|      | 6.3.2 Merge XBox – PSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 76 |
| 6.4  | XBox – PSP 間インターフェース試験                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 78 |
|      | 6.4.1 BASE_CLK & TLM_CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 78 |
|      | 6.4.2 SMP_CLK & SCI_ENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 78 |
|      | 6.4.3 CMD_ENA & HK_ENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 79 |
| 6.5  | Science データ取得試験                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 80 |
|      | 6.5.1 Signals from the Detector-sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 80 |
|      | 6.5.2 Enable channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 80 |
|      | 6.5.3 WFRB 内の Signal 波形の検証                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 81 |
|      | 6.5.4 Detector-sim – XBox-BBM 間の接続変更                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 84 |
|      | 6.5.5 $\mathbf{\mathfrak{g}}$ pixel $\boldsymbol{\mathfrak{o}}$ Science Data $\boldsymbol{\mathfrak{Fry}}\boldsymbol{\mathfrak{o}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 85 |
|      | 6.5.6 波高値の比較 (ch 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 87 |
|      | 6.5.7 波高値の比較 (ch0 : Short pulse height)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 87 |

| 6.6 | XBox – PSP 間コマンド/レスポンス試験                        | 88  |
|-----|-------------------------------------------------|-----|
|     | 6.6.1 HK Status データのチェック                        | 88  |
|     | 6.6.2 <b>バイアス電圧の</b> HK Analog Statas <b>確認</b> | 88  |
| 第7章 | PSP シミュレーションプログラムを用いた機能評価                       | 93  |
| 7.1 | PSP シミュレーションプログラム                               | 93  |
| 7.2 | 使用データ                                           | 93  |
| 7.3 | Science Module 処理後の Science データ                 | 94  |
|     | 7.3.1 パラメータ設定値                                  | 94  |
|     | 7.3.2 トリガ情報のプロット                                | 94  |
|     | 7.3.3 PXP_PEAKFIND 範囲の変更                        | 102 |
| 7.4 | CPU <b>処理のシミュレーション</b>                          | 104 |
| 7.5 | 平均パルス、テンプレート作成                                  | 104 |
| 7.6 | グレード付け                                          | 105 |
|     | 7.6.1 loResPH vs derivMax                       | 106 |
| 7.7 | 最適フィルタによる波高値計算                                  | 107 |
| 7.8 | エネルギー分解能計算                                      | 109 |
|     | 7.8.1 ベースライン分解能                                 | 109 |
|     | 7.8.2 エネルギー分解能 (at Mn-K $\alpha$ : 5.9 keV)     | 109 |
|     | 7.8.3 リニアリティー補正                                 | 110 |
|     | 7.8.4 考察                                        | 112 |
| 第8章 | まとめと今後                                          | 113 |
| 付録A | XDS データ書き換え手順                                   | 115 |
| 付録B | pxWFRB[0]-[17] 内の波形データ                          | 117 |

# 第1章 はじめに

## 1.1 X 線天文学

紀元前から行われてきた天体観測は、近年まで可視光によるものがほとんどであった。しかし観測技術の発展と共に、電波や赤外、X線、 $\gamma$ 線といった可視光以外の電磁波を捉えることが可能となり、宇宙物理学は目覚しい発展を遂げた。例えば図 1.1 はかに星雲を異なる波長域で見たイメージで、このように同じ天体を異なる波長で観測することにより、天体で起きている物理現象を詳細に研究することができるようになったのである。中でもX線は宇宙における高エネルギー現象を解明するのに役立つ。



図 1.1: 超新星残骸である「かに星雲」を可視光 (Hubble 衛星) と X 線 (Chandra 衛星) で見たイメージ。 波長によって全く異なるイメージが得られることが分かる。X 線イメージでは、中心に X 線源であるパ ルサーがいることが分かる。



図 1.2: 宇宙からの様々な波長の電磁波が、どこまで地上に届くかを表した図。可視光と赤外線の一部、 電波の領域に谷があり、これらの電磁波は地上に届く。それ以外は、大気の吸収を受けて、地上にはあ まり届かない。 X線は1885年 Wilhelm Röntgen によって発見された約0.1 から100 keVのエネルギー帯の電磁波の一種である。X線が太陽から出ていることは1950年代には知られていたが、図1.2 に示すとおり、X線は地球の厚い大気によって吸収されてしまうので、本格的なX線観測は衛星やロケット技術が発達した、1960年代に開始された。はじめて太陽以外の天体からのX線を検出したのは、1962年 Riccardo Giacconi および Bruno Rossi らによって打ち上げられたロケットによるものであった。月面で反射された太陽 X線を観測する予定が、偶然にもそれまで知られていなかった天体からの X線を検出したのである。その天体は後にさそり座 X1 と名付けられ、全天で最も明るい X線源であることが分かっている。この発見以降、多くの気球や X線天文衛星が打ちげられ、現在までに様々な天体が X線を出していることが分かった。図1.3 にこれまでの衛星およびロケット打ち上げのまとめを示す。Giacconi はこの発見により X線天文学の発展に貢献したことが認められ、2002年にノーベル賞を受賞している。

日本のX線観測は小田稔が考案した「すだれコリメータ」によって、さそり座X1の位置を同定する ことに成功したことから始まった。このコリメータは、2層のすだれ状のコリメータを検出器の上に置 くことで、入射X線の角度による強度変化を感知し、方向を知るという仕組みであり、X線撮像の難し い>10keV以上の太陽X線観測でもこの原理に基づく装置が今も使われている。すだれコリメータは 1979年に打ち上げられた日本の第一機目のX線天文衛星「はくちょう」に世界で初めて観測衛星に搭載 され、次々と新しいX線源の位置を決定することに貢献した。「はくちょう」以降も、最新の技術によ る新しい発見を求めて次々と天文衛星が打ち上げられ、最近では2005年に第5番目の「すざく」の打ち 上げが成功した。



図 1.3: 世界の宇宙 X 線観測の歴史。

X線による代表的な観測対象はプラックホールや中性子星、白色矮星などの高密度天体や銀河団といった巨大な天体、数千万度から数億度という超高温プラズマ、巨大なエネルギーを放出する超新星爆発など、地上ではほとんど再現不可能な極限状態の物理現象を持つ天体である。また宇宙から等方的でほぼ一様なX線も観測され、宇宙背景X線放射と呼ばれている。これはROSAT衛星による月のX線イメージ(図1.4 左)を見れば分かるように、太陽X線を反射していない月面より背景の宇宙の方がX線で明るく光っていることからも見て取れる。これは広がった天体によるものか、遠い点源の重ね合わせによるものかという議論があったが、日本の「あすか」衛星やアメリカのChandra衛星などによって、遠方にある活動銀河核(中心に巨大ブラックホールを持つ銀河)からの放射の重ね合わせでほぼ説明できることが明らかとなっている。さらに、近年ではおおよそ高エネルギー現象とはほど遠い存在に思われがちな太陽系内の惑星や彗星、衛星からのX線も検出されるようになってきた(図1.4 右)。今では金星や地球、火星、木星、土星といった系内のほとんどの惑星からX線が検出されている。

このように X 線観測は現在まで、飛躍的な成長を遂げてきた。これは過去の衛星から、現在稼働中の Chandra 衛星 (アメリカ) や XMM-Newton 衛星 (ヨーロッパ)、そして日本のすざく衛星に至る中で、 検出器や望遠鏡の性能が格段に向上してきたためである。X 線天文学のさらなる進歩のためには技術開 発を行い、新発見が可能な装置を搭載した衛星を打ち上げる必要がある。そこで日本では「すざく」に 続く新たな宇宙 X 線天文衛星 ASTRO-H の開発が進行中である。



図 1.4: 左は月の X 線イメージ。右側の光っている面が太陽 X 線が月面で反射している部分で、反対側 の面は周りよりも暗くなっている。右は Chandra 衛星による木星の X 線イメージ。極付近はオーロラ で、赤道付近は太陽 X 線の散乱で光る。

# 第2章 ASTRO-H衛星

## 2.1 衛星の概要

ASTRO-H 衛星は 2014 年打ち上げ予定の日本の第6番目と なる X 線天文衛星である。2005年に日本から打ち上げられた 「すざく」衛星 (ASTRO-EII) の後に、これに続く X 線天文衛 星として New exploration X-ray Telescope (NeXT)の検討が 進められていた。そして2008年に名を改め、正式に科学衛星計 画として発足したのが ASTRO-H 衛星である。現在 JAXA を 中心とした日本の研究機関や大学、NASA、ESA などの国際協 力のもと開発が進んでいる。「すざく」衛星に比べてASTRO-H には、従来の半導体検出器を1桁しのぐ軟X線の超高精度分 光性能と、硬X線望遠鏡による集光撮像能力が追加される。こ れによって、銀河団成長の直接観測や超新星残骸の膨張速度の 直接観測、硬X線背景放射の元となる巨大ブラックホールの発 見、さらにはブラックホール重力の効果の理解など、様々な宇 宙の物理状態が解明できると大きく期待されている。ASTRO-Hには4種類の観測システムが搭載され、0.3 ~ 600 keV と いう広いエネルギー帯域を観測することが可能である。また、 ASTRO-H 衛星内の通信ネットワークには SpaceWire という共 通規格が実装される (3.4 参照)。以下に ASTRO-H の概要と搭 載される各検出器の性能を示す。



図 2.1: ASTRO-H 衛星の完成予想図

| 望遠鏡焦点距離    | 軟 X 線系:5.6 m 硬 X 線系:12 m                                               |
|------------|------------------------------------------------------------------------|
| 観測軌道       | 高度 550 km、軌道傾斜角 31 度の略円軌道                                              |
| 外形寸法 (観測時) | $7.7 \text{ m (W)} \times 2.9 \text{ m (D)} \times 13.8 \text{ m (H)}$ |
|            | 軌道上で伸展式光学台を約6m伸展                                                       |
| 衛星質量       | 2,600 kg (推薬、液体ヘリウム含む)                                                 |
| 発生電力       | 3,500 W 以上                                                             |
| バス電圧       | 非安定 50V 系 (リチウムイオンバッテリー使用)                                             |
| 打ち上げ       | 2013 年度冬期 (H-IIA デュアルロンチを想定)                                           |
| ミッション期間    | 3年以上(目標5年)                                                             |

表 2.1: ASTRO-H の概要



図 2.2: ASTRO-H の全体図

2.2 搭載検出器



図 2.3: 各検出器の配置

| 観測システム名                          |          | 基本仕様                                                  |
|----------------------------------|----------|-------------------------------------------------------|
| 軟 X 線分光システム                      | エネルギー帯域  | 0.3 - 10 keV                                          |
|                                  | エネルギー分解能 | < 7  eV (@ 6  keV)                                    |
| SXS (X 線マイクロカロリメータ)              | 有効面積     | $210 \text{ cm}^2 (@ 6 \text{ keV})$                  |
| +                                | 画素数      | $6 \times 6$ pixel                                    |
| SXT-S ( <b>軟</b> X <b>線望遠鏡</b> ) | 視野       | ~3×3 分角                                               |
|                                  | 角度分解能    | < 1.7 分角                                              |
|                                  | 動作温度     | 47 mK                                                 |
| 軟 X 線撮像システム                      | エネルギー帯域  | 0.3 - 12 keV                                          |
|                                  | エネルギー分解能 | < 150  eV (@ 6  keV)                                  |
| $SXI (X \ \& CCD)$               | 有効面積     | $360 \text{ cm}^2 (@ 6 \text{ keV})$                  |
| +                                | 画素数      | $6 \times 1024 \times 1024$ pixel                     |
| SXT-I (軟 X 線望遠鏡)                 | 視野       | ~ 35×35 <b>分角</b>                                     |
|                                  | 角度分解能    | < 1.7 分角                                              |
|                                  | 動作温度     | -120 °C                                               |
| 硬 X 線撮像システム                      | エネルギー帯域  | 5 - 80 keV                                            |
|                                  | エネルギー分解能 | 1 - 2  keV (@ 60  keV)                                |
| HXI (硬 X 線撮像検出器)                 | 有効面積     | $300 \text{ cm}^2 (@ 6 \text{ keV})$                  |
| HXT (硬 X 線望遠鏡)                   | 視野       | $\sim 9 	imes 9$ 分角                                   |
|                                  | 角度分解能    | < 1.7 分角                                              |
|                                  | 動作温度     | $-20 \pm 5$ °C                                        |
| 軟ガンマ線分光システム                      | エネルギー帯域  | 10 - 600 keV                                          |
|                                  | エネルギー分解能 | 2  keV (@ 40  keV)                                    |
| SGD ( <b>軟ガンマ</b> 線検出器)          | 有効面積     | $> 200 \text{ cm}^2$ (Photo absorption mode @ 30 keV) |
|                                  |          | $>30~{\rm cm}^2$ (Compton mode @ 100 keV)             |
|                                  | 動作温度     | -20 °C                                                |

表 2.2: ASTRO-H の観測システム

## 2.3 期待される成果

ASTRO-Hの期待されている科学的成果の一つに銀河団成長の直接観測がある。ダークマターを含む 銀河団の総質量を測定し、距離(赤方偏位)の関数として調べることで銀河団成長の理解を深めることが できる。そのためには「すざく」衛星などの従来のX線観測で行われてきた高温プラズマの熱的エネル ギーの測定のみならず、プラズマの乱流や衝突といったバルクな運動エネルギー、加速された粒子のも つ非熱的エネルギーを測定することで銀河団の総エネルギーを正確に知る必要がある。そこから銀河団 を取り巻くガスの圧力を導くことができるため、静水圧平衡の観点から、ガスを閉じ込めるのに必要な 銀河団の総質量を計算することができると考えられている。

銀河団プラズマの典型的な熱運動の速度は  $100 \sim 1000 \text{ km/s}$  であると考えられており、エネルギーのドップラーシフトや輝線幅からこの高温プラズマのバルクな運動エネルギーを測定することができる。例として 6.7 keV の輝線に対して  $\sim 20 \text{ eV}$  のエネルギー分解能があれば 1000 km/s 程度の速度を知ることができ、 $\sim 2 \text{ eV}$  あれば 100 km/s 相当の速度が分離できるため、より精密な分光能力が要求される。さ

らに、優れたエネルギー分解能が実現できれば、エネルギースペクトル上で各輝線の微細構造を分離す ることが可能となる。光学的に薄いプラズマから出る異なる電離状態の鉄輝線などを分解できれば、輝 線強度比からプラズマの温度や密度といった物理状態を精度良く決定することができるようになる。図 2.4 に 2 eV のエネルギー分解能で得られるスペクトルのシミュレーションを示す。



図 2.4: Warm Hot Intergalactic Medium と呼ばれる、銀河団同士を結ぶ宇宙の大規模構造に沿って存 在すると思われる希薄なプラズマからの放射シミュレーション。2 eV のエネルギー分解能を持つ X 線マ イクロカロリメータ (実線)と典型的な半導体検出器で見た場合 (点線)を比べた。

従来の X 線天文衛星で広く使われているのが半導体検出器 (X 線 CCD など) である。X 線の光電吸収 によって生じた電子ホール対を電気的に読み出すことで、X 線のエネルギーを決定することができ、さ らにピクセル化することで優れた撮像能力を持つ。しかし電子数の揺らぎによって、エネルギー分解能 は理論的に 5.9 keV の入射 X 線に対し約 120 eV となり、図 2.4 のように輝線の微細構造を充分に分離す ることができない。

さらにエネルギー分解能がより良い分光法としては、回折格子があり、これは米 Chandra 衛星や欧 XMM-Newton 衛星に搭載されている。X 線のエネルギーを回折によって、位置情報に焼き直すことで、 エネルギー分解能は1 keV 以下の入射 X 線に対し、約2 eV を達成できる。しかし、広がった天体には 使用が困難であり、また位置情報を読むことから、波長の短い、すなわちエネルギーの高い X 線に対し てはエネルギー分解能が悪くなる。さらに、光を分散させるため、検出効率が低いことも欠点である。 以上のことから、回折格子による分光観測は実質上、エネルギーの低い軟 X 線の明るい点源に限られて しまい広がった天体には適していない。

ASTRO-H 衛星には、上記2つの方法とは異なる分光装置、X 線マイクロカロリメータ (SXS) が搭載 され、半導体検出器を一桁しのぐエネルギー分解能が備わる。この SXS 装置を用いれば、銀河団のよう な広がった天体でも十分なエネルギー分解能で分光観測することができ、これによって、銀河団プラズ マの速度を知ることで運動エネルギーが測定可能となる。図 2.5 に検出器の性能比較 (分光性能と有効 面積)を示す。SXS は2 keV 以上のエネルギー帯域で、エネルギー分解能と有効面積共に他の検出器に 比べて高い性能を持っていることが分かる。

また、HXI や SGD のもたらす硬 X 線領域のスペクトルから銀河団内で加速された相対論的な電子の 非熱的放射を検出することで非熱的エネルギーを測ることができる。このように ASTRO-H 衛星の観測

# によって、銀河団の質量測定の精度が大幅に上がると期待されている。 次章では、我々の開発チームである X 線マイクロカロリメータ SXS の詳細について述べる。



図 2.5: 左:入射エネルギーに対する分光能力 (エネルギーを分解能で割ったもの)の比較。右:入射エネルギーによる有効面積の比較。有効面積はX線望遠鏡の面積、冷凍機の入射窓の透過率、および検出器の検出効率を考慮したもの。

# 第3章 X線マイクロカロリメータ SXS

# 3.1 X線マイクロカロリメータ

観測天体や X 線のエネルギーによらず、高いエネルギー分解能を持つ分光器が X 線マイクロカロリ メータである。X 線マイクロカロリメータとは、入射エネルギーを素子の微小な温度上昇として読み 取る検出器で、X 線を吸収するための吸収体、温度を読み取るための温度計、吸収した熱を逃がす熱浴 から成る。図 3.1 に構造の概略図を示す。エネルギー E の X 線が吸収体に入射すると、素子の温度は  $\Delta T = E/C$  だけ上昇する。ここで C は吸収体と温度計の熱容量の合計値である。吸収された熱はC/G(G は熱浴との熱伝導度)の時定数で指数関数的に熱浴へと逃げて、素子は元の温度に戻る。

現在、最も一般的な X 線マイクロカロリメータは、温度変化を電気抵抗値の変化として読み出す抵抗 温度計方式である。抵抗温度計での一般的なエネルギー分解能は

$$\Delta E_{\rm FWHM} = 2.35 \sqrt{\frac{4k_{\rm B}T^2C}{|\alpha|}} \sqrt{\frac{n}{2}}$$
(3.1)

という式で表される。ここで  $\alpha$  は温度計の感度を表す無次元量であり、 $\alpha = d \log R/d \log T$  と定義される。半導体温度計では、 $\alpha$  は負の値で典型的に $-7 \sim 0$  である。また、n は熱伝導度の温度依存性  $(G = KnT^{n-1}$ 、ただし K は定数) による項で、 $3 \sim 5$  の値を取る。熱容量の温度依存性も考慮すると  $(C \propto T^3)$ 、式 (3.1) からエネルギー分解能は温度に強く依存することが分かる。そのため、極低温 (~ 100 mK) で動作させることが高いエネルギー分解能を得るためには必須となる。



図 3.1: カロリメータの概略図

# 3.2 「すざく」XRS (X-Ray Spectrometer)

X 線マイクロカロリメータは 2005 年 7 月に打ち上げられた日本の「すざく」に世界で初めて衛星搭載された。図 3.2 左が「すざく」に搭載された X 線マイクロカロリメータ XRS (X-Ray Spectrometer) であり、6×6 ピクセル並んでいる。XRS の温度計はリンとホウ素をドープしたシリコンで作られている。図 3.2 右に示す。さらに温度計の端には SU8 というポリマーの円柱を配置し、その上に1 ピクセル 当たり 624×624 µm サイズの吸収体を付けて、図 3.2 中央のような形になる。吸収体は X 線の吸収効率 が良く、吸収した X 線をより速く熱に変えて素早く拡散させることができ、なおかつ比熱が小さい方が 良い。そこで XRS では水銀テルルを採用した。その結果、軌道上で 7 eV のエネルギー分解能を達成し た (図 3.3)。XRS の諸元を表 3.2 にまとめる。しかしながら、XRS は軌道上でのヘリウム消失という不 慮の事故のため、打ち上げ後 1ヶ月あまりで機能停止となり、宇宙観測には至らなかった。



図 3.2: 左:XRS の写真。中央:左図の拡大写真。中央がX線受光面になっており、周りに配線が伸び ている。右:温度計1ピクセルの拡大図。



図 3.3: 軌道上で XRS が取得した、校正用の線源  $^{55}$ Fe からの Mn K $_{\alpha}$  のスペクトル。

# **3.3** ASTRO-H SXS (Soft X-ray Spectrometer)

そこで私の所属する日本のX線マイクロカロリメータグループは、米欧と共同で、2014年打ち上げ予定のX線天文衛星ASTRO-Hに新しいX線マイクロカロリメータSXS (Soft X-ray Spectrometer)を搭載し、世界初の宇宙観測を目指している。SXS は現在、日米と欧州の国際協力のもと開発が進められている。それぞれ米国がセンサー部、断熱消磁冷凍機 (ADR)、開口部とフィルタ、検出器のアナログ部、ADR 制御回路、日本が室温から He 温度までの冷却系、機械式冷凍機、冷凍機駆動回路、デジタル信号処理回路、SpaceWire ルーターなどの通信ネットワーク周り、欧州 (オランダ、スイス) がフィルターホイールとX線発生装置の部分を担当している。図3.4 に SXS の構成のブロック図を示す。



図 3.4: SXS ブロック図

## 3.3.1 SXS の要求性能

SXSのサイエンスを満たすために求められている SXSの要求性能 (Scientific Requirements: SRs) は以下の通りである。

| #    | 要求事項                                            | 要求値                  | 目標値                  |
|------|-------------------------------------------------|----------------------|----------------------|
| SR01 | Energy resolution in FWHM (eV)                  | 7                    | 4                    |
| SR02 | Energy range (keV)                              | 0.3 - 12.0           | 0.1 - 16.0           |
| SR03 | Residual background $(s^{-1} \text{ keV}^{-1})$ | $1.5 \times 10^{-3}$ | $1.5 \times 10^{-3}$ |
| SR04 | Field of view $(\operatorname{arcmin}^2)$       | $2.9 \times 2.9$     | $2.9 \times 2.9$     |
| SR05 | Detector array                                  | $6 \times 6$         | $6 \times 6$         |
| SR06 | Angular resolution in HPD (arcmin)              | 1.7                  | 1.3                  |
| SR07 | Effective area at 1 keV $(cm^2)$                | 160                  | 160                  |
|      | Effective area at 6 keV $(cm^2)$                | 210                  | 210                  |
| SR08 | Lifetime (yr)                                   | 3                    | 5                    |
| SR09 | Energy scale accuracy (eV)                      | 2                    | 1                    |
|      | Energy resolution accuracy (eV)                 | 2                    | 1                    |
| SR10 | Count rate per array $(s^{-1})^a$               | 150                  | $2500^{\mathrm{b}}$  |
|      | Count rate per pixel $(s^{-1})^a$ 20            |                      | 20                   |
| SR11 | Absolute time-assignment accuracy (ms)          | 10                   | 0.08                 |
|      | Time-assignment resolution (ms)                 | 1                    | 0.08                 |

表 3.1: ミッションサイエンスからの要求

#### 3.3.2 SXS の構成機器

ここでは主に検出器から信号処理系の機器について説明する。

#### センサー部 (CDA: Calorimeter Detector Assembly)

SXS のセンサー部は基本的に XRS と同じ半導体温度計型カロリメータを継承しているが、いくつか の点で性能をより強化している。開発は NASA/GSFC が担当している。半導体型カロリメータは低い 温度で動作させればさせるほど、比熱が小さくなり、エネルギー分解能が良くなる (式 3.1)。そのため、 SXS では XRS の時よりも動作温度を 10 mK 下げて 50 mK とする。さらに、XRS の吸収体として用い ていた水銀テルルにカドミウムを注入することで、比熱を水銀テルルの ~ 1/4 に抑えることで、地上実 験で 6 keV の入射 X 線に対し、4.2 eV という XRS を凌ぐエネルギー分解能が得られている。また、比 熱を抑えることで素子の大きさも巨大化が可能となるため、有効面積も XRS に比べて大きくなる。表 3.2 に SXS の性能をまとめた。



図 3.5: NASA で制作された検出器の Engineering Model (フライト品と同等の性能をもつプロトタイプ)。図では一部吸収体が外されている。

| 表 3.2: XRS および SXS の設計値。 |                                                |                                               |  |  |
|--------------------------|------------------------------------------------|-----------------------------------------------|--|--|
|                          | 「すざく」XRS                                       | ASTRO-H SXS                                   |  |  |
| エネルギー分解能 (FWHM)          | $7~{ m eV}$                                    | <b>要求</b> 7 eV/目標4 eV                         |  |  |
| <b>有効面積</b> @ 6.7 keV    | $130 \ \mathrm{cm}^2$                          | $230 \ \mathrm{cm}^2$                         |  |  |
| 視野                       | $2.9' \times 2.9'$                             | $2.8' \times 2.8'$                            |  |  |
| 吸収体サイズ                   | $624$ $\times$ $624$ $\times$ t8 $\mu {\rm m}$ | $814$ $\times$ $814$ $\times$ t8 $\mu \rm{m}$ |  |  |
| アレイサイズ                   | $6 \times 6$                                   | $6 \times 6$                                  |  |  |
| 動作温度                     | $60 \mathrm{mK}$                               | $50 \mathrm{~mK}$                             |  |  |
| 寿命                       | 2.5~3 年                                        | 要求3年/目標5年                                     |  |  |

#### Anti-coincidence 検出器

SXS には宇宙線の入射などといった X 線以外のバックグラウンド除去のために ani-coincidence 検出 器を持っている。anti-co 検出器の応答はカロリメータの応答よりもかなり早く、時定数は < 0.5 msec である。したがってカロリメータ自身がパイルアップによってサチってしまうような場合でも診断を続けることができる。anti-co 検出器はシリコンの PIN 型検出器で、抵抗率 13 ~ 21 k $\Omega$ /cm (室温) の n 型半導体の片面にボロンを、片面にリンを打ち込んで、それぞれ p+ 層と n+ 層としている。大きさは 10 mm × 10 mm、厚さは 500  $\mu$ m で、カロリメータアレイの 0.63 mm 下に置かれる (図 4.23)。anti-co は 1 台搭載され、読み出しは次節で述べる XBox で行なう。



図 3.6: anti-co 検出器の位置

Cold JFET (Junction Field-Effect Transistor)

X 線カロリメータで検出した信号は、JFET (接合型電界効果トランジスタ)で読み出しを行う。カロリ メータの信号は典型的には 100 $\mu$ V 程度で、インピーダンスは 50 MΩ にも達する。このカロリメータか らの高インピーダンス信号は、初段の JFET ソースフォロワでインピーダンス変換され (出力インピー ダンス ~ 1 kΩ at 1 kHz)、差動出力のまま XBox に送られる。ただし JFET はヘリウム温度では動作 せず、100 K 程度に暖める必要がある。SXS ではヒータによって JFET を 130 K の熱浴で動作させる ようにしており、9 nV/ $\sqrt{Hz}$  (目標: 4 nV/ $\sqrt{Hz}$ ) 程度の低い雑音レベルを実現している。そして JFET の熱が検出器に入り込まないように、二重のボックスに収めて内側の JFET ボックスは熱伝導度の低い Kevlar ワイヤーで吊り下げる構造になっており、ヒータの熱のほとんどは断熱消磁冷凍機 (ADR)の外 部に位置する予冷用デュワーシールド (28 K) に排熱される (図 3.9)。JFET は各系毎に、JFET パッ ケージと呼ばれる 1 枚のボードにまとめられている (図 3.8)。表と裏にそれぞれ 10 チャンネルの JFET (9pixel + 1 anti-co) を搭載することができる (片側は anti-co が無いため 9 チャンネル)。JFET パッ ケージ には温度計と温度制御用ヒータが 1 つずつ付いている。JFET の駆動、ならびに JFET ボード の温度制御と温度計測は次節で述べる XBox で行う。



図 3.7: JFET ボックス



図 3.8: JFET パッケージ (片側): 左から温度計、ヒーター、10 JFETs



図 3.9: 熱フローマップ

XBox (X-ray Box)

カロリメータで検出した信号信号は、次に XBox (X-ray Box) と呼ばれる SXS のアナログ信号処理部 へと送られる (図 3.10)。XBox は XBox-A, XBox-B と 2 系統搭載され、それぞれ独立してカロリメータ アレイ 18 ピクセル + anti-co 1 チャンネルの信号を扱う。開発は NASA/GSFC が担当している。XBox は以下の様な機能を果たす。

- 検出器からの信号のサンプリング、多重化
- 信号の増幅
- A/D 変換
- カロリメータや JFET への電圧供給、モニタリング
- 検出器の温度制御、モニタリング

XBox 内で A/D 変換されたデータは電磁波ノイズの少ない LVDS (Low voltage differential signaling) で差動出力のまま PSP (Pulse Shape Processor) と呼ばれる装置へと送信される。



図 3.10: XBox-BBM (Bread Board Model: 試験用モデル) 外観

#### PSP ((Pulse Shape Processor))

PSPはJAXA/ISASを中心に日本側が開発担当しているSXSのデジタル波形処理装置である。XBox でデジタル変換された波形データは、PSP内でさらにデジタル波形処理が施され、パルスのトリガや詳 細な波高値計算が行われる(次章)。

#### DIST

DIST は、衛星のバス電源を SXS の各機器へと変圧して電源供給を行う機器である。衛星からは、32.5 - 52.0 V 非安定化電源が供給されるので、それを変圧し供給する。また、current limit を設けて電流値を監視しており、電源供給の ON/OFF を行うことができる。

#### SWR

SXS-SWR は、SXS の各 SpaceWire コンポーネントと衛星内ネットワークとを接続するルータである。冗長系のため電気的に同等な SXS-SWR A/B の 2 系統が存在し、それぞれ各機器と同様に接続されている。開発は NEC が担当している。

# 3.4 次世代衛星通信規格 SpaceWire

ASTRO-H 衛星では、各衛星機器間の通信を SpaceWire と呼ばれる規格で通信を行う。従来の衛星で は、衛星搭載機器間での通信インターフェイスは衛星ごと、機器ごとに開発されており、各々独自の規 格が使用されていた。そのため、開発期間の長期化、信頼性確保が困難になる、技術が継承されないと いった問題が生じており、科学衛星開発における研究者の負担を大きくしていた。SpaceWire は、この ような衛星搭載のデータ収集システムの問題点を解決するためのネットワーク規格の一つであり、世界 の科学衛星の共通信格を目指したネットワークプロトコルである。SpaceWire は IEEE1355 を元に宇宙 用に改良されたもので、ESA を始めとして、ISAS/JAXA、NASA など世界の主要な研究機関や大学、 企業などが中心となって開発を進めている。SpaceWire により機器間 通信インターフェイスが統一され ることで、装置開発と通信インターフェイス開発を完全 に分離することができる。そのため、装置開発 と通信インターフェイス開発の相互干渉がなくなり、高い信頼性を実現することができる。さらに、全 ての装置が共通の通信インターフェイスを持つことで、機器同士の接続の自由度が高くなり、より柔軟 なシステムの構築が可能になる。

#### 3.4.1 SpaceWire の特徴

SpaceWire は IEEE1355 をベースに開発された高速シリアル通信規格である。信号伝送には Low Voltage Differential Signaling (LVDS) が用いられ、低消費電力で高速通信が可能である。また、+ と – の信号をクロスさせて伝送する差動インタフェースであるため、ノイズに強く、信号線からのノイズ 輻射も少ないという特徴がある。SpaceWireのリンク速度は2 Mbps ~ 400 Mbpsと可変であり、様々な 規模の装置にも柔軟に対応することができる。さらに、ルーター機能を使うことによって様々なネット ワークを組むことができるため、メッシュ状のネットワークを構成することができる。これによりデータ 転送の際に回線の途絶や混雑が生じても迂回ルートを確保することができ、信頼性の高いシステムを実 現できる。SpaceWire に用いるケーブル線はツイステッドペアになっており、ノイズに強い構造となっ ている (図 3.12)。ケーブルは最大で 10m 以上伸ばすことができるため、衛星上での自由な機器配置が 可能である。また、使用されるコネクタは9ピンのD-subコネクタを使用している。SpaceWireによる データ転送は、全てパケット単位で行われる。SpaceWire で規定されるパケットには2種類あり、アド レス (宛先)を指定して任意のデータを送るパケットとあらかじめ内容が決められている最優先コードに 分けられる。前者は図 3.11 のような構造をもったパケット構造になっており、Destination Address は パケットの送り先を示すアドレス部である。SpaceWireの規定ではパケットの先頭を示すフラグがない ため、1 パケットの終わりを示す End of packet marker の次に来るデータをパケットの先頭と解釈する。 後者の最優先コードには Time-Code が含まれる。Time-Code とは衛星搭載機器全てにブロードキャス トされる衛星全体の共通時刻情報である。ASTRO-H 衛星では、GPS 衛星から取得した絶対時刻のタイ ミングから Time-Code を生成し、衛星機器全体へと配信する。各衛星機器はこの Time-Code を元に時 刻の同期を行う。

| Destination address  |  |  |  |
|----------------------|--|--|--|
| Cargo                |  |  |  |
| End of packet marker |  |  |  |

図 3.11: SpaceWire パケットのフォーマット



図 3.12: SpaceWire ケーブルの構造

#### 3.4.2 Remote Memory Access Protocol (RMAP)

ネットワークの末端機器のメモリー空間を操作するためには、その末端機器に Central Processing Unit (CPU)を搭載するのが簡単な方法である。しかし、衛星内のスペース、電力、重量等の制限のなかで末 端機器まで CPU を搭載することが難しい。そこで ASTRO-H 衛星の通信規格 SpaceWire では、CPU 非搭載の機器のメモリー空間まで操作できるプロトコルとして RMAP が規格化されている。Remote Memory Access Protocol (RMAP) は、上位の CPU 搭載ノードから、あたかも自分のメモリ空間の一 部として、ネットワーク末端機器の搭載メモリにアクセスできる機能を提供する。SpaceWire の上位の レイヤーに相当する RMAP はプロトコルレベルで規定されているので、末端機器に CPU を搭載する 等の特別な実装を施す必要がない。



図 3.14: SpaceWire レイヤと RMAP レイヤの関係

図 3.14 に簡単な RMAP パケットのやりとりのイメージを示す。RMAP は Command パケットと Reply パケットの組 (Transaction) をひとつの単位として動作する。Command を出す側を Initiator、 受け取る側を Target と呼ぶ。RMAP には主に、RMAP Write (メモリ書き込み) と RMAP Read (メ モリ読み出し) の 2 つの命令が用いられる。RMAP Read の場合、Initiator がコマンドを送信すると、 Target は要求されたアドレスに対応する値が含まれる Reply パケットを Initiator に返す。Initiator が RMAP Write コマンドを送信すると、Target は要求されたアドレスのメモリを書き換えて、書き換え たことを示す Reply パケットを Initiator に返すようになっている。

ASTRO-H では、データ収集を司る SMU (Satellite Management Unit) を頂点とする tree 状のネットワーク構成をとり、SpaceWire RMAP を用いて、末端の搭載機器にコマンド指令を送信したり、観測装置などから発生する観測データ (テレメトリー) を収集などを行う。テレメトリー・コマンドの送受信の方式としては、RMAP Write で送りつける PUSH 方式と、RMAPread で読みに行く PULL 方式とが考えられるが、ASTRO-H では、コマンド送信は SMU から末端機器に PUSH し、テレメトリー受

信は SMU が末端機器から PULL する方式をとる。これは、中央コンピュータ SMU の設計を簡略化し、 衛星内データのやり取りを SMU で一括管理するためである。

## 3.5 本修士論文の目的

前述のとおり、XRS では宇宙観測に至らなかったため、依然として X 線マイクロカロリメータでの宇 宙観測は実現していない。SXS での冷却系は、より優れた性能を高い信頼性で実現するための最適化が 行われている。また、信号処理系のアルゴリズムの基本部分は XRS のものを継承しているが、ハード ウェア・ソフトウェアは共に新設計となる。さらに新たな通信規格 SpaceWire を用いることで信頼性を 高めている。現在、我々のグループは三菱重工業 (MHI)の協力のもと、SXS のデジタル波形処理シス テムを司る PSP (Pulse Shape Processor)の開発を行っている。本修士論文では、性能実証モデル (EM) の製作に向けて試験用モデル (BBM)を用いて実証試験を行った。PSP の機能の挙動を確認し、実験デー タを元に、FPGA にボードに実装されるロジックの最適化することで最終的な仕様を決定した。また、 PSP に搭載するアルゴリズムと同等のシミュレーションプログラムを構築し、ソフトウェア上で実デー タを処理させることでトリガされるイベントに対して考察を行った。

以下では、第4章でPSPの機能と各種モジュールの説明を行う。第5章ではXBoxシミュレーターを 用いた接続試験、さらに第6章ではDetectorシミュレーター·XBox-BBM·PSP-BBMの全信号処理 系を接続した噛み合わせ試験について述べる。続いて第7章ではPSPシミュレーションプログラムを用 いたパルス処理の考察について報告する。

# 第4章 デジタル波形処理システム PSP

PSP (Pulse Shape Processor) は ASTRO-H 衛星に搭載される SXS デジタル信号処理部を担う装置で ある。設計・開発は、首都大、埼玉大、JAXA/ISAS が担当し、設計・製造は三菱重工業 (MHI) が担当 している。PSP を構成する各種ボードの詳細は節 4.4, 節 4.9 で説明する。

#### 4.1 PSPの構成

PSP 周りのブロック図を図 4.1 に示す。PSP は PSP-A, PSP-B の 2 系統が搭載され、それぞれは独立 して機能する。それぞれの XBox から送られてきた Science データ (18 ピクセル + anti-co 1 チャンネ ル) は接続された PSP に LVDS で送信される。PSP に送られた波形データは各チャンネル毎に用意され たバッファ内に格納され、イベントパルスのトリガ、時刻付け、詳細な波高値解析が行われる。それぞ れの PSP は次の 4 つのボードから構成されている。

- Mission I/O ボード (MIO) × 1 (4.4 節)
- SpaceCard ボード  $\times$  2 (4.9 節)
- Power Supply Unit (PSU)  $\vec{\pi} \vec{F} \times 1$

それぞれの PSP ユニットのサイズは 188.0×263.0×103.0 mm<sup>3</sup> で、重さが 5.773 kg (BBM の場合)。 電源は DIST (distributer) から PSU を介して供給され、入力電圧は 32 - 52V、個々の消費電力は 14.2W (最大 18.9W) である。



図 4.1: PSP とその周辺機器のブロック図

#### 4.2 PSP の性能要求

SXS の設計とサイエンスの要求を満たすための PSP の性能要求 (Performance Requirements: PRs) はいかのとおりである。なお、括弧内は小節 3.3.1 に述べた Scientific Requirements との対応を示している。

#### [処理全般に対する要求]

- **PR1-01** 観測モード時は全 36 カロリメータピクセルチャンネルと 2 anti-co チャンネルを連続的に処理 を続けこと (SR04, 05)。
- **PR1-02** 2 系統の PSP (PSP-A, B) の内、片方の PSP が失われた場合でも、もう片方の PSP で 18 カ ロリメータピクセルチャンネルと 1 anti-co チャンネルの処理は継続できること。
- PR1-03 PSP はすべてのパルスを観測時間の2%以下の dead time で検出すること。

#### [カロリメータパルスに対する要求]

- **PR2-01** PSP は 0.3 12.0 keV のイベントを検出すること (SR02)。
- PR2-02 PSP は 12.0 keV を検出できるダイナミックレンジをもつこと (SR02)。
- **PR2-03** 5×(rms noise) より大きいピークをもつパルスを検出すること (SR02)。
- **PR2-04** 重なったパルスで 5 ms 以上離れているものを PR2-03 を満たしつつ検出すること (SR01, 07, 09)。
- PR2-05 重なったパルスで 2 ms 以上離れているものはコントラストが 30 よりも小さければ検出する こと (SR01, 07, 09)。
- **PR2-06** 全てのパルスに対して high-resolution (HR), medium-resolution (MR), low-resolution (LR) かつ、primary パルスか secondary パルスのグレード付けを行うこと (SR01)。
- **PR2-07** HR イベントの処理でのスペクトルの分解能劣化を 0.5 eV 以下に抑えること (SR01, 09)。
- **PR2-08** MR イベントの処理では、HR イベントの分解能 + 1 eV 以下に抑えること (SR01, 09)。
- PR2-09 LR イベントの処理では、HR イベントの分解能の 10 倍以下に抑えること。
- **PR2-10** PSP は 150 cts s<sup>-1</sup>array<sup>-1</sup> のカウントレートを処理可能であること (SR10)。
- **PR2-11** PSP は最も明るいカロリメータピクセルで  $20 \text{ s}^{-1}$ pixel<sup>-1</sup> のイベントを処理すること (SR10)。

PR2-12 パルスの検出時間精度を1%以下とすること。

[anti-co パルスに対する要求]

PR3-01 anti-co パルス検出の dead time を 5 ms/event 以下とすること (SR03)。

#### [時刻付けに対する要求]

**PR4-01** 全パルスイベントに対して絶対時刻<sup>1</sup>の精度 1 ms 以下で時刻付けすること (SR11)。 <sup>1</sup>絶対時刻とは衛星全体にブロードキャストされた TimeCode によって定義された時刻のこと。 **PR4-02** 全パルスイベントに対して relative 時刻<sup>2</sup>の精度が 1 ms 以下 (目標 80 µs) で時刻付けをすること (SR03, 11)。

**PR4-03** XBox-A, XBox-B のサンプリングクロックのズレを 1µs 以下とすること (SR01, 11)。

## 4.3 各ボードの機能

MIO ボードには FPGA が実装され、SpaceCard ボードには CPU が搭載されている。PSP-A,B の 2 つの FPGA ボードはそれぞれ独立しており、4 つの CPU もハードウェア・ソフトウェア的に独立して 機能している。PSP の主な機能は大きく分けて 4 つある。以下に PSP の主な機能を挙げる。

- 1. Science データ処理
  - XBox からの Sicence データの逆多重化 [FPGA]
  - カロリメータのピクセル波形データからのパルス検出 [FPGA, CPU]
  - anti-co 検出器の波形データからのパルス検出 [FPGA]
  - カロリメータのイベントパルスのグレード付け (パルスの質によってフラグ付け) [CPU]
  - 最適フィルタ処理 (4.10.3 節)を用いたカロリメータイベントパルスの物理情報の抽出 (波高 値、トリガ時刻) [FPGA, CPU]
  - anti-co イベントパルスからの物理情報の抽出(波高値)[FPGA]
  - Science データのパケット化と送信 [CPU]
  - 最適フィルタ処理用の波形テンプレートの計算 [CPU]
- 2. テレコマンド (TC) の処理小節 4.8.1
  - XBox へのテレコマンドの受け渡し [FPGA, CPU]
  - テレコマンドの解釈と実行 [FPGA, CPU]
- 3. HK (House-Keeping: 状態監視) データの処理 (小節 4.8.2)
  - XBox からの HK データの受け渡し [FPGA, CPU]
  - PSP の HK データの収集 [CPU]
  - HK データのパケット化と送信 [CPU]
- 4. 時刻の同期 (小節 4.8.3)
  - XBox への Base clock, sampling clock の供給 [FPGA]
  - 全 MIO ボード間でのクロック同期 [FPGA]
  - カロリメータ、anti-coの波形データへの時刻付け [FPGA]
  - Time HK データの生成、パケット化と送信 [CPU]

PSP で処理された Science データ及び XBox, PSP の HK データは PSP 内でパケット化され、衛星の 上流システムである SMU (Satellite Management Unit) の要求によって、DR (Data Recorder) へと保 存される。PSP と SMU, DR との通信は SpaceWire 規格で、SWR (SpaceWire ルータ) を介して行わ れる。

<sup>&</sup>lt;sup>2</sup>relative 時刻とは異なるピクセル間の絶対時刻のズレのこと。

# 4.4 Mission I/O (MIO) ボード

XBox から出力された Science データは MIO ボードへと入力される。MIO では主にクロックの生成や イベントパルス・ノイズのトリガ、波形データの保存、各種物理情報の抽出の処理などを行う。これら の処理を行うデジタル処理回路は、MIO ボード上の FPGA と呼ばれるユーザーが自由に内部論理回路 を書き換えることのできるデバイス内に実装され、各種モジュール (節 4.5) として機能する。

#### 4.4.1 FPGA

通常デジタル信号を処理するための回路は、標準ロジック IC などと呼ばれる IC を多数並べて作る。 しかし、実装面積が大きくなり、高速な動作が難しいといった問題がある。そこで、特定用途向けの集 積回路である ASIC(Application Specific Integrated Circuit) が使われる。ASIC を作ることで、回路を 一つの集積回路に収めてしまい、省面積化、高速化を実現することができる。しかし、このような ASIC は半導体工場で製造されるため、開発に時間がかかり、工場の設備を使用するために莫大なコストもか かる。そのため、ASIC 開発段階での試作や、小量の ASIC しか使用しない場合、その度に半導体工場 で LSI を生産するのは非現実的である。また、製造された LSI の中身は書き換えることが出来ないた め、後から回路を修正したりすることは不可能である。そこで、ユーザが自由に回路を書き換えること のできるデバイスとして開発されたのが FPGA (Field Programmable Gate Array) である。同じよう に回路を書き換えることのできるデバイスとして CPLD(Complex Programmable Logic Device) と呼 ばれるものもあるが、両者では内部構造や書き込める回路規模に違いがあり、一般に FPGA の方がよ り大規模な回路を書き込むことができる。初期の頃の FPGA は性能が悪く、非常に高価であったため ASIC 開発時の試作や研究にのみ用いられていたが、現在では性能も上がり安価になったため、実際の 製品に組み込まれて使用されることも多く、人工衛星でも既に使われている。ここでは PSP の試験用モ デル (BBM) で用いられている Xilinx 社の FPGA (Spartan-3 シリーズ) を例に説明するが、基本的な 構造はどこの製品でも同じである。FPGA には

- 1. ロジックセル及びコンフィギャブルロジックブロック (CLB)
- 2. 入出力ブロック (IOB)
- 3. ブロック RAM
- 4. 乗算ブロック 18 × 18 bit
- 5. デジタルクロックマネージャ(DCM)

が基板上に設けられており、それらの間を内部配線が結合することにより目的とするロジックを実現し ている。ロジックセルは4入力のルックアップテーブル(LUT)とDフリップフロップから成り、ルッ クアップテーブルを変更することにより様々なロジックを実現している。このロジックセルを9個集め たものがロジックブロックである。Spartan-3 XC3S2000 には全部で5120個のロジックブロックが存 在している。入出力ブロックはボードの外縁部に位置し、外部との信号のやりとりをを行う。Spartan-3 ではLVCMOS、LVDS、LVTTLなど多数の信号入力に対応している。プロックRAMはデータ保持 機能を有し(720 KB)、乗算器は18 bitの乗算が可能である。回路全体及び局所的なクロックはクロッ クマネージャにより供給される。一般的なFPGAの場合、書き込まれた回路の情報はSRAM (Static Randam Access Memory)のアーキテクチャにより保持される。SRAMは電源を切ると情報を失って しまうという特徴があるため、FPGAは電源を入れ直すたびに回路情報を書き込む必要がある。そこ で、外部に回路情報を記憶した ROM(コンフィグレーション ROM)を実装し、電源投入時に自動的に回 路情報を読み込むようにして使われることが多い。MIOボード上の FPGA も同様のである。そのため FPGA を書き換えるためには、コンフィグレーション ROM を書き換える必要がある。Spartan シリーズに用いられるコンフィグレーション ROM は EEPROM(Electronically Erasable and Programmable Read Only Memory) の一種である Flash Rom である。



図 4.2: FPGA の内部構造



図 4.3: ロジックセルの内部構造

#### 4.4.2 MIO ボードの構成

FPGA: MIOボードは2個の FPGA が搭載されており、一方 (通称 SpaceWireFPGA) には SpaceWire の機能が実装されている。もう一方の FPGA (通称 UserFPGA) は、ユーザが独自の回路を書き込む ことができ、処理内容に合わせてロジックを構築することにより汎用的な運用を行なうことができる。 PSP ではこの UserFPGA に MIO の各種機能を実装することになる。試験用モデル (BBM) では Xilinx 社製 Spartan-3 シリーズが使用されるが、性能実証モデル (EM) では Actel 社製の RTAX 2000 シリー ズを実装し、宇宙環境に適した書き換え不可の焼き切り型の FPGA に変更される。

SDRAM: MIO ボードはデータ保存領域として SDRAM を持つ。BBM では UserFPGA, SpWFPGA 共に SDRAM が直結しているが、EM では UserFPGA 側の FPGA は外される。SDRAM の容量は 64MB で EDAC 機能 (Error Detection and Correction) を持つ。アクセスのバス幅は 32 bit である。

Clock: MIO ボードは水晶振動子を持ち、内部で時刻生成を行う。20 MHz のクロック (Base clock) を 生成し、これを基準にして各コンポーネントの処理タイミングが決まる。2 つの FPGA 間には 30 MHz のバスが組み込まれており、SpWFPGA と SpCard 間の SpaceWire 通信はリンクレート 20 MHz で行 われる。



図 4.4: MIO ボード外観

#### 4.4.3 XBox - MIO 間のインターフェース

PSP-A, PSP-B にはそれぞれ MIO-A, MIO-B が搭載されている。各々の MIO は XBox-A, XBox-B と 9 対の LVDS 線で接続されている (図 4.5)。それぞれツイストペアケーブルになっており、2 つのケーブル間の電圧が異なる差動出力として変換されている。また、MIO 同士で時刻の同期を取る必要がある

| FPGA            | Xilinx Spartan-3 XC3S2000 4FGG456C (BBM の場合) |
|-----------------|----------------------------------------------|
|                 | Actel RTAX2000S-CQFP352 (EM の場合)             |
| Interface [接続先] | LVDS (non SpW) [XBox] ×2 (51 ピン)             |
|                 | LVDS (non SpW)[MIO] ×2 (25 ピン)               |
|                 | LVDS (SpW) [SpaceCard] ×3 (9 ピン)             |
|                 | $\cdots$ [PSU] ×1 (15 ピン)                    |
| サイズ             | $240 \times 220 \text{ mm}^2$                |



ため MIO-A, MIO-B は 2 対の LVDS 線 (SYNC\_BASE, SYNC\_SMP) で接続され、同期が取られ ている。各 LVDS 線の名称と用途を表 4.2 にまとめた。



図 4.5: XBox と MIO 間の LVDS 接続

#### 4.4.4 タイミング

MIO ボード上の水晶振動子で生成された BASE\_CLK (20 MHz) は MIO から XBox への全ての 通信 (CMD\_ENA, CMD\_DAT, SMP\_CLK) に用いられる。XBox に送信された BASE\_CLK は TLM\_CLK として反射され、XBox から MIO への通信 (HK\_ENA, HK\_DAT, SCI\_ENA, SCI\_DAT) の際の base clock として使われる。各信号のタイミングのフローチャートを図 4.6 に示す。MIO-A, MIO-B はマスター/スレーブの関係に置かれ、マスター MIO で生成した BASE\_CLK, SMP\_CLK (sampling clock)をスレーブ MIO に配信することで同期を取っている。SMP\_CLK は、UserFPGA 内部パラメー タ baseCntRoundup で指定された baseCnt (BASE\_CLK で生成したカウンタ)のカウント数毎に立 ち上がる。これにより SMP\_CLK (sample clock) の周期が決められ、12.5 kHz もしくは 15.624 kHz (400 or 320 clocks) の 2 通りを選択できるようになっている。

XBox は SMP\_CLK の立ち上がりで ADC を開始し、およそ 32.4 µs 後に SCI\_ENA (science enable) を有効にすることで MIO へ Science データの出力を始める。SCI\_ENA は SCI\_DAT (science data)

| LVDS 線名                                                         | Pin | 周期   | 電流値  | 説明                                                                               |  |
|-----------------------------------------------------------------|-----|------|------|----------------------------------------------------------------------------------|--|
|                                                                 | 番号  | (Hz) | (mA) |                                                                                  |  |
| (from PSP to XBox)                                              |     |      |      |                                                                                  |  |
| BASE_CLK_A+                                                     | 4   | 5 M  | 3.4  | MIO からの Base clock 送信                                                            |  |
| $BASE_CLK_A-$                                                   | 22  | 5 M  | 3.4  |                                                                                  |  |
| SMP_CLK_A+                                                      | 24  | 5 M  | 3.4  | XBox 内で使用する Sampling clock の送信                                                   |  |
| $SMP_CLK_A -$                                                   | 7   | 5 M  | 3.4  |                                                                                  |  |
| CMD_ENA_A+                                                      | 9   | 5 M  | 3.4  | $\mathbf{CMD\_DAT} \ \boldsymbol{\textit{O}} \ \mathrm{enable}/\mathrm{disable}$ |  |
| CMD_ENA_A-                                                      | 27  | 5 M  | 3.4  |                                                                                  |  |
| $CMD_DAT_A +$                                                   | 29  | 5 M  | 3.4  | XBox へのコマンド                                                                      |  |
| CMD_DAT_A-                                                      | 12  | 5 M  | 3.4  |                                                                                  |  |
| (from XBox to PSP)                                              |     |      |      |                                                                                  |  |
| $\mathbf{TLM}_{\mathbf{-}}\mathbf{CLK}_{\mathbf{-}}\mathbf{A}+$ | 39  | 5 M  | 3.4  | XBox からの Base clock を telemetry clock                                            |  |
| TLM_CLK_A-                                                      | 40  | 5 M  | 3.4  | として反射                                                                            |  |
| $SCI_ENA_A+$                                                    | 42  | 5 M  | 3.4  | $\mathbf{SCI}_\mathbf{DAT} \mathbf{O} $ enable/disable                           |  |
| SCI_ENA_A-                                                      | 41  | 5 M  | 3.4  |                                                                                  |  |
| $SCI_DAT_A+$                                                    | 43  | 5 M  | 3.4  | XBox からの Science データ                                                             |  |
| SCI_DAT_A-                                                      | 44  | 5 M  | 3.4  |                                                                                  |  |
| $HK_ENA_A +$                                                    | 46  | 5 M  | 3.4  | $\mathbf{HK}_{\mathbf{DAT}} \mathcal{O} $ enable/disable                         |  |
| HK_ENA_A-                                                       | 45  | 5 M  | 3.4  |                                                                                  |  |
| HK_DAT_A+                                                       | 47  | 5 M  | 3.4  | XBox からの HK データ                                                                  |  |
| HK_DAT_A-                                                       | 48  | 5 M  | 3.4  |                                                                                  |  |
| (Shield lines)                                                  |     |      |      |                                                                                  |  |
| BASE_CLK_SHLD_A                                                 | 5   | N/A  | N/A  | BASE_CLK_A±のシールド線                                                                |  |
| SMP_CLK_SHLD_A                                                  | 25  | N/A  | N/A  | SMP_CLK_A±のシールド線                                                                 |  |
| CMD_DAT_SHLD_A                                                  | 30  | N/A  | N/A  | CMD_DAT_A±のシールド線                                                                 |  |
| CMD_ENA_SHLD_A                                                  | 10  | N/A  | N/A  | CMD_ENA_A±のシールド線                                                                 |  |
| (from MIO-A to MIO-B)                                           |     | 1    | 1    |                                                                                  |  |
| $SYNC_BASE_A2B+$                                                | 9   | 5 M  | 3.4  | MIO-A からの BASE_CLK                                                               |  |
| SYNC_BASE_A2B-                                                  | 5   | 5 M  | 3.4  |                                                                                  |  |
| SYNC_SMP_A2B+                                                   | 8   | 1    | 3.4  | MIO-A からの SMP_CLK                                                                |  |
| SYNC_SMP_A2B-                                                   | 4   | 1    | 3.4  |                                                                                  |  |
| SYNC_A2B_SHLD                                                   | 3   | N/A  | N/A  | SYNC_(BASE SMP)_A2B± 共通のシールド線                                                    |  |
| (from MIO-B to MIO-A)                                           |     |      |      |                                                                                  |  |
| SYNC_BASE_B2A+                                                  | 9   | 5 M  | 3.4  | MIO-BからのBASE_CLK                                                                 |  |
| SYNC_BASE_B2A-                                                  | 5   | 5 M  | 3.4  |                                                                                  |  |
| SYNC_SMP_B2A+                                                   | 8   | 1    | 3.4  | MIO-BからのSMP_CLK                                                                  |  |
| SYNC_SMP_B2A-                                                   | 4   | 1    | 3.4  |                                                                                  |  |
| SYNC_B2A_SHLD                                                   | 3   | N/A  | N/A  | SYNC_(BASE SMP)_B2A± 共通のシールド線                                                    |  |

表 4.2: XBox - MIO ボード間の LVDS 線
の有効部分を示す。SCI\_ENA の開始は FPGA パラメータである sciEnaDelayLower, sciEnaDelayUpper で指定された time window の間で検出する (式 4.1)。SCI\_ENA が有効の間に XBox はピク セルデータ 18ch と anti-co データ 1ch、カウンタ情報が順に並んだ SCI\_DAT を MIO へと送信する。 その際、SCI\_DAT は TLM\_CLK に同期する。

同様にして、CMD\_ENA (command enable) の有効部分で CMD\_DAT (command data)、HK\_ENA (HK enable) で HK\_DAT (HK data) をそれぞれ出力する。クロックの動作については Clock Module (小節 4.8.3) で説明する。



図 4.6: XBox とのタイミングチャート

# 4.5 モジュール

PSP にて行われるデジタル処理の行程は、(1) Science データ処理、(2) テレコマンド処理、(3) HK データ処理、(4) 時刻同期 の4つ存在し、それぞれの作業は CPU と FPGA 間で共有して行われている。 この節では FPGA、つまり MIO ボード内の UserFPGA で行われる処理について述べる。UserFPGA で は上記の処理を次の 4 つのモジュールで行う。

- 1. Science module: XBox から送信されてきた Science データを処理し、バッファへと格納する。 保存されたデータは SpaceCard に回収され、更なる波形解析が行われる (節 4.9)。さらに Science モジュールは以下のもので構成される。
  - (a) Main Module(節 4.6): XBox から出力された Science データの展開、エラーやクリップの チェック、微分値計算を行う
  - (b) Sub-modules(節 4.7):3 種類の独立したアルゴリズムの処理が存在
    - PXP: ピクセルパルスイベントのトリガ・保存
    - PXN: ピクセルノイズのトリガ・保存
    - ACP: anti-co パルスのトリガ・保存
  - **XBox TC module**: SMU から SpaceCard を経由して送られてきたテレコマンドの受け取りと、 それの XBox への受け渡しを行う。

XBox HK module: XBox の HK データを受け取り、SpaceCard へ受け渡す処理を行う。

Clock module: クロックの生成、XBox への輸送を行う。また、衛星本体で生成している GPS time と FPGA クロックのマッチングの記録を行う。

UserFPGA の行う処理のブロック図を図 4.7 に表記する。



図 4.7: UserFPGA プロセスのブロック図

# 4.6 Science Main Module

このモジュールで行う処理は以下の5つに挙げられる。

- 1. サンプルエラーのチェック、サイエンスデータの展開
- 2. チャンネルエラーとクリップのチェック
- 3. Delay バッファへのデータ保存
- 4. ピクセルデータの時間微分計算
- 5. 生波形データと処理後のデータを WFRB バッファに保存

# 4.6.1 Science データの受信

XBox-A, XBox-Bからそれぞれ MIO-A, MIO-BへLVDS 線を介して SCI\_DAT, SCI\_ENA, TLM\_CLK が送信されてくる (図 4.5)。Science データの 1 サンプルは sampling clock の立ち下がりに同期して周期

12.5 kHz (or 15.625 kHz) で到着する。SCI\_ENA の立ち下がりは SMP\_CLK の立ち上がりから以下 の式を満たす BASE\_CLK カウント n の間で検索される。

$$sciEnaDelayLower \le n < sciEnaDelayUpper$$
 (4.1)

## 4.6.2 Science データの展開

XBox から出力されてくる Science データの 1 サンプルのサイズは 312 bit であり、多重化した 18 ピ クセル + 1 anti-co チャンネル (1 チャンネル当たり 16 bit) と sciRecvCnt カウンタ (8 bit) で構成さ れている (図 4.8)。



図 4.8: XBox からの 1 サンプル分の Science データ内訳

各チャンネルは図 4.9 のようなフォーマットであり、14 bit で ADC サンプルの値 (-8192 ~ 8192) を 示し、スペアビットが 1 bit (常時 0 )、パリティビット (odd parity) が 1 bit からなる。

パリティビット (parity bit):パリティビットとは、与えられた2進数に対して全体の奇偶性を保つ ために与えられる一桁の2進数(0 or 1)のことで、最も単純なエラー検出符号である。この場合の odd parity は、データの1の数が奇数になるよう設定される。パリティビットはパリティチェックに用いら れ、パリティビットが正しくない場合には転送中に誤りが発生したことを示し、parityErrCnt がカウ ントされる。このようにパリティビットはエラー検出符号であるが、どのビットが変化したかを指摘で きない。しかし、1ビットだけ追加するだけで済む点やいくつかの XOR ゲートだけで生成できる点など の利点がある。

|         | MSB LSB                                                             |
|---------|---------------------------------------------------------------------|
| Pixel   |                                                                     |
| chan.   | pxAdcSample (14b)  Spare (1b, value=0)  Parity (1b, odd parity)     |
| Anti-co |                                                                     |
| chan.   | acAdcSample (14b)<br>Spare (1b, value=0)<br>Parity (1b, odd parity) |

図 4.9: Science データのビット割り当て

4.6.3 サンプルエラーのチェック

出力されてきた Science データはモジュールによって以下のサンプルエラーのチェックが行われる。エ ラーが検出された場合はそれぞれのカウンタに付加され、そのサンプルに関して sampleErr に 1 が設 定される。

- サンプルデータの長さが 312 bit とは異なる場合  $\rightarrow$  sciLenErrCnt にカウント
- Time window の間にサンプルデータが来ない場合 → sciLenErrCnt にカウント
- sciRecvCnt カウンタが +1 変化しなかった場合 → sciCntErrCnt にカウント

4.6.4 クリップ・チャンネルエラー・Science データエラーのチェック

#### クリップ

展開した 19 チャンネル (18 ピクセル + 1 anti-co) の adcSample の値のクリップの有無を確認する。 ADC サンプル値は 14bit (つまり  $2^{14}$ ) で表記され、 $-8192 \sim 8191$  の範囲を取り得る。-8192 もしくは 8191 の値であった場合、ADC サンプル値は表示しきれずクリップしていると見なされ、全ピクセルチャ ンネル内のクリップデータの数を pxClipCnt にカウントする。anti-co の場合は acClipCnt にカウン トされる。

## チャンネルエラー

19 チャンネルの内、いずれかのチャンネルにパリティエラー (parity error) が生じている場合、その サンプルに関して channelErr に 1 を設定する。

# Science データエラー

上記で挙げた sciDataErr と channelErr が合成され、sciDataErr として残される。

$$sciDataErr = (sciDataErr||channelErr)$$
 (4.2)

## 4.6.5 Delay バッファへの保存

受信した 18 チャンネルのピクセルデータは、それぞれチャンネル毎に設けられた Delay バッファ (pxDelayBuf[ch]) に保存されていく。Delay バッファに格納されたデータは次の微分値計算に用いられる (4.6.6 節)。各 Delay バッファのサイズは、1536 bit = 96 サンプル (pxDelayBufSize×16 bit (1 サンプル当 たりのデータサイズ)) である。DelayBufSize は以下のような内訳で設定される。

DelayBufSize = maxPxOffsetAvgLen + maxPxOffsetAvgGap + derivHalfLenMax

Delay バッファ内は図 4.10 のようにビットが割り当てられており、sciDataErr, pxAdcSample[ch] 値が記録される。anti-coの Delay バッファに関しても同様である。

|            | MSB LSB                                                                                          |
|------------|--------------------------------------------------------------------------------------------------|
|            | EEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210 |
| pxDelay    |                                                                                                  |
| Buf        | pxAdcSample (14b)  Spare (1b, value=0)  sciDataErr (1b)                                          |
| acDelay    |                                                                                                  |
| Buf        | 🗖 acAdcSample (14b) 🔲 Spare (1b, value=0) 🔳 sciDataErr (1b)                                      |
| sciRecvCnt |                                                                                                  |
| DelayBuf   | sciRecvCnt (8b)                                                                                  |

図 4.10: Delay バッファ内のビット割り当て



図 4.11: Boxcar 微分 (derivHalfLen = 8 の場合)

## 4.6.6 時間微分の計算

PSP では、イベントパルスの検出は送られてきた波形の時間微分した波形を使って行う (4.7.1 参照)。 全チャンネル (anti-co は除く)の全てのサンプルに対して時間の一階微分の値を計算する。微分値の計 算は、個々のサンプルデータに boxcar derivative 関数を畳み込む事によって求める (図 4.11)。あるサン プルデータから自身も含め、向こう derivHalfLen で指定されたサンプル数分と、過去 derivHalfLen 分のサンプルを用いて、以下の式のように微分値を導出する。derivHalfLen は最大 32 まで設定可能 であるため、前後 64 サンプル使用することができる。

$$derivLong[ch](i) = \begin{pmatrix} derivHalfLen[ch]^{-1} \\ \sum_{i'=0} pxAdcSample[ch](i+i') \end{pmatrix} \\ - \begin{pmatrix} \sum_{i'=-derivHalfLen[ch]}^{-1} pxAdcSample[ch](i+i') \end{pmatrix} \\ = derivLong[ch](i-1) + pxAdcSample[ch](i+derivHalfLen[ch]-1) \\ - 2pxAdcSample[ch](i-1) + pxAdcSample[ch](i-derivHalfLen[ch]-1). \end{cases}$$

$$derivative[ch](i) = (derivLong[ch](i) + 2^{derivShift[ch]^{-1}})/2^{derivShift[ch]} \qquad (4.4)$$

derivHalfLen[ch]:  $0 \sim 31$  で変更可能 (0 は 32 として扱う: デフォルト 8) derivLong[ch]: 微分値計算後の 20 bit サイズの値 derivShift[ch]: 16 bit にリサイズする際の bit shift に使用するパラメータ (表 4.3) derivative[ch]: 16 bit にリサイズされた微分値

モジュールによって初めに計算された微分値 derivLong[ch] は 20 bit 表記であるが、WFRB (次節) に保存される際は、符号付き 16 bit 表記で記録される。したがって、16 bit にリサイズ ( $-32766 \leq$  derivative  $\leq 32766$ ) する必要がある。式 4.4 において、2<sup>derivShift[ch]</sup> での割り算によって小数点以下 を  $-\infty$  方向へ切り捨てている (bit shift と同義)。この時、derivShift[ch] は derivative の値が符号付 き 16 bit に収まるように自動的に選択される (表 4.3 参照)。また、割り算の前に 2<sup>derivShift[ch]-1</sup> を足し ているのは四捨五入のためである。

| $\operatorname{derivShift}$ | derivHalfLen                                |
|-----------------------------|---------------------------------------------|
| 0                           | $1 \leq \operatorname{derivHalfLen} \leq 2$ |
| 1                           | $3 \leq \mathbf{derivHalfLen} \leq 4$       |
| 2                           | $5 \leq \mathbf{derivHalfLen} \leq 8$       |
| 3                           | $9 \leq \mathbf{derivHalfLen} \leq 16$      |
| 4                           | $17 \leq \mathbf{derivHalfLen} \leq 32$     |

表 4.3: derivShift と derivHalfLenの対応

#### 4.6.7 生波形 処理データの保存

上記の処理工程を終えたサンプルデータは、SDRAM内に設けられた wave-form ring buffer (WFRB) と 呼ばれるバッファ内に保存される。WFRB は各チャンネル毎に用意されている ( $\mathbf{pxWFRB}$ [ch],  $\mathbf{acWFRB}$ )。 全 19 個の WFRB の容量はそれぞれ 1 MB 用意されており、1 サンプルは 32 bit で記録されていく。つ まり、1 周当たり 262,144 サンプル (= 1 MB/32 bit =2<sup>18</sup>)保存することが可能である。1 MB 分全て書 き込まれた時には、書き込み位置 ( $\mathbf{writePtr}$ )を0 に戻し、初めのサンプルを上書きしていくようになっ ている。

WFRB 内のビット割り当てを図 4.12 に示す。1 サンプルは、ADC サンプル値 (pxAdcSample[ch]) は 14 bit, 微分値 (derivative[ch]) は 16 bit, Science データエラーフラグ (sciDataErr) と writeLap の LSB 値はそれぞれ 1 bit の全 32 bit から成る。



図 4.12: pxWFRB, acWFRB 内のビット割り当て

全 19 個の WFRB には共通のバッファinfo が存在する。バッファinfo では次のサンプルの WFRB 内で の書き込み位置を示す writePtr (18 bit) と、WFRB の周回数を示す writeLap (6 bit) が記録されてい る (図 4.13, 4.14)。さらにバッファinfo には WFRB の初めに書かれたサンプルデータの smpelCnt を sampleCntWFRB として記録する。sampleCnt は Clock Module (節 4.8.3) が run になり、sample clock (小節 4.4.4)の通信が始まってからのサンプル数のことを指す。WFRB に詰められる Science デー タは微分値計算がされたサンプルから保存されていくので、初めの sampleCntWFRB は微分値計算 に使われた過去 32 サンプル分差し引いた値から記録されていく。



図 4.13: writePtr と writeLap の概念



図 4.14: WFRBinfo のビット割り当て

# 4.7 Science Sub-module

Science sub-module では、Science Main Module での処理を終えたデータを元にイベントのトリガや 物理値の抽出を行い、その結果をイベントバッファに保存する作業を行う。イベントバッファ内のデー タは後に SpaceCard 上の CPU 処理の際に利用される (節 4.10)。

Science Sub-module には、 ピクセルパルスのトリガ (PXP) ピクセルノイズのトリガ (PXN) anti-co パルスのトリガ (ACP) の 3 タイプのタスクが存在する。

# 4.7.1 ピクセルパルスのトリガ (PXP)

イベントパルスの検出は、ADC サンプル値から計算した時間微分波形を用いて行う。微分波形を用い るのは、接近したダブルパルスの検出が可能となるだけでなく、長い周期をもったノイズがベースライ ンに与える影響を少なくするスムージング効果も期待できるためである (図 4.15)。

ピクセルパルスの取得データの長さは FPGA パラメータで定義されており (1024 or 2048 サンプル)、 次式の ADC サンプルの微分値が設定されたスレッショルドレベルをを越えた瞬間からレコードされ始 める。



図 4.15: ピクセルパルスの例

それぞれレコードされたデータからは以下の4つの State から各種物理量を抽出する。その際のパラメー タの様子を図 4.16 にまとめる。

<u>PXP\_READY</u>: ピクセルパルストリガ sub-module の初期化が終わると、ピクセルパルストリガ sub-module は PXP\_READY state に移行する。この state でトリガされたパルスから、loResPH (low-resolution pulse height: CPU による最適フィルタ処理を施す前の波高値)を求める際のベースラ イン loResBase[ch] を求める。導出は以下の様な式で行われる。

$$\begin{aligned} \mathbf{loResBase[ch]}(i) &= \frac{1}{2^{\mathbf{pxOffsetAvgLenPow}}} \\ &\times \left( \sum_{i'=\mathbf{pxOffsetAvgGap+1}}^{2^{\mathbf{pxOffsetAvgLenPow}} + \mathbf{pxOffsetAvgGap}} \mathbf{adcSample[ch]}(i-i') + 2^{\mathbf{pxOffsetAvgLenPow-1}} \right) \end{aligned}$$

(4.7)

pxOffsetAvgLenPow と pxOffsetAvgGap は、図 4.16 に示されているとおり、パルスがトリガ されたサンプルより以前の部分のサンプルを指し、小節 4.6.5 で保存された maxPxOffsetAvgLen, maxPxOffsetAvgGap からそれぞれ指定されたサンプル分だけ使用する。式 4.7 では、四捨五入のた め 2<sup>pxOffsetAvgLenPow-1</sup> を加算し、2<sup>pxOffsetAvgLenPow</sup> で割り算することで小数点以下を -∞ 方向へ 切り捨てている。

さらに、この state ではトリガされたサンプルの WFRB 内での書き終わり位置 (trigPtr) と周回数 (trigLap) を記録する。

<u>PXP\_ARMED</u>: この state では微分波形をモニターして、微分値が減少へと転じる箇所を探し出す。 derivative[ch] < derivPre[ch] そして、ADC サンプル値と微分値のピーク値をそれぞれ pxAdcSam-



図 4.16: ピクセルパルスのトリガ時のパラメータ [最小:最大:デフォルト]

pleMax[ch], derivMax[ch] として保存する。

<u>PXP\_FALL</u>: PXP\_ARMED がピークを検出後、PXP\_FALL state へと移行し、微分値が設定したス レッショルドを下回るまで続く (derivative[ch] < pxFallEndThres[ch])。この state では、引き続き pxAdcSampleMax[ch], derivMax[ch] の検出を続ける。通常、微分値は単調減少していくが、ごく稀 にこの state 中に 2 つ目の小さなイベントパルスが入り込むことがある (これを quick double イベントと 呼ぶ)。ここでは、微分値が一つ前のサンプルの微分値を上回った際 (derivative[ch] – derivPre[ch] ≥ pxQuickDoubleThres[ch])、quick double フラグ (quickDouble[ch]) を立てる。

PXP\_PEAKFIND: 微分値が (pxFallEndThres[ch]) を下回ると次に PXP\_PEAKFIND state へと 移行する。ここでは微分値は見ずに、pxAdcSampleMax[ch] のみが引き続き検索され、ファースト パルスのピークの ADC サンプル値を上回る場合、pxAdcSampleMax[ch] の値が更新される。ピー ク値を検索する PXP\_PEAKFIND の範囲は FPGA パラメータ pxPFStateCntMax で指定されてお り、もしもこの間に pxAdcSampleMax[ch] が更新されれば、さらにそこから pxPFQuitCntMax 分ピーク値の検索を開始する。(pxPFStateCnt ≥ pxPFStateCntMax) もしくは (pxPFQuitCnt ≥ pxPFQuitCntMax) となった場合、PXP\_PEAKFIND は終了し、先ほど式 4.7 で導出した loRes-Base[ch] を用いて loResPH[ch] の計算を行う。ADC サンプル値のピークが loResBase を下回る場 合、loResPH は 0 とする (式 4.8)。

$$\mathbf{loResPH[ch]} = \begin{cases} \mathbf{pxAdcSampleMax[ch]} - \mathbf{loResBase[ch]} & (\mathbf{pxAdcSampleMax[ch]} \ge \mathbf{loResBase[ch]}) \\ 0 & (\texttt{L}記以外) \end{cases}$$

$$(4.8)$$

# 4.7.2 ピクセルパルス EDB (Event Dual Buffer)

トリガされたピクセルパルスのイベント情報は、ピクセルパルス Event Dual Buffer (pxPulseEDB) へと記録される。図 4.17 に示すように、pxPulseEDB は 2 つの bank を持っている。2 つの bank 0, bank 1 はそれぞれ9 チャンネルずつデータが書き込まれる。さらに 1 つの bank の中には 2 つの side が 設けられ、デュアルバッファを構築している。FPGA パラメータによって指定された side に従い、片方 の side に FPGA がデータの書き込み (RMAPwrite) を行い、もう片方は SpaceCard 上の CPU がデー タの読み出し (RMAPread) を行う。各 pxPulseEDB の side の終わりにはそれぞれフッター情報が付 与されている。このフッター情報は CPU の RMAPread アクセスの際にデータと同時に読み込まれる。 RMAPread が完了するとフッター情報内の cpuAck フラグが立てられ、CPU による読み込みが完了し て FPGA による書き込みが可能であることを宣言する。フッター情報にはこの他に、と同様に次の書き 込み位置 (wp : write pointer) と周回数 (lap) が含まれる。また、RMAPread アクセスや cpuAck の 度に付加されるシーケンスカウンタ (seqCnt) も記録する (図 4.19)。

記録されるデータ本体の内容は図 4.18 のようなフォーマットになっている。一つのレコードのデータ長は 64 bit で、パルスレコードの最初のサンプルの trigPtr (18 bit) と trigLap (6 bit), さらに derivMax[ch] (16 bit), loResPH[ch] (14 bit), quickDouble[ch] (1 bit), チャンネル番号 (5 bit) から成る。

pxPulseEDBの各 sideのサイズは1 KB であり、125 レコード (= 64 bit record<sup>-1</sup>×125 records = 0.98 KB) 記録することができる。



図 4.17: Bank の切り換え

|         | MSB LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Image: Constraint of the |
| pxPulse |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EDB     | chan(5b) 🗆 spare(4b) 🗖 qckDbl(1b) 🗖 trigLap(6b) 🗖 trigPtr(18b) 🗖 loResPH(14b) 🗖 derivMax(16b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## 図 4.18: pxPulseEDB のビット割り当て



図 4.19: EDBinfo のビット割り当て

# 4.7.3 ピクセルノイズのトリガ (PXN)

後述の SpaceCard 上 CPU で行う最適フィルタ処理(節 4.10.3)で使用するため、Science sub-module ではピクセルノイズの収集も行う。ピクセルノイズのレコード長は FPGA パラメータ pxNoiseRecord-CleanLen[ch] で決められており、ADC サンプルの時間微分の絶対値が設定したピクセルノイズのスレッ ショルドレベルを下回ったところ(|derivative[ch]| ≤ pxNoiseThres[ch])でトリガを行い、そこから レコード長分ノイズデータを取得する(図 6.17)。もしトリガのかかったサンプルからレコード長内にパル スなどが入射することなく、|derivative[ch]| ≤ pxNoiseThres[ch] が続いた場合(pxNoiseCnt[ch] ≥ pxNoiseRecordCleanLen[ch])、ノイズのレコードは完了し、ノイズデータはピクセルノイズ EDB (pxNoiseEDB) へと保存される。トリガがかかってからレコード中に微分の絶対値がスレッショルドを上回ってしまった場合 (|derivative[ch]|  $\geq pxNoiseThres[ch]$ )、ノイズの収集は破棄され、再度トリガがかかったサンプルから収集をやり直す。

保存先である pxNoiseEDB は、ピクセルパルス EDB と同様、2 つの bank それぞれに 2 つの side が 存在する。振る舞いもピクセルパルス EDB と同じで、片方が FPGA によって RMAPwrite されている 間、もう片方が CPU によって RMAPread が実行される (図 4.17)。また、取得したサンプル内に Science データエラー (sciDataErr) が一つでも含まれていた場合、event エラーフラグを立てる。

ノイズデータの1レコードのデータ長は32 bit で、event エラーフラグ (1 bit)、ノイズレコードの最初 のサンプルの trigPtr (18 bit) と trigLap (6 bit)、チャンネル番号 (5 bit) から構成される (図 4.21)。 pxNoiseEDB の各 side のサイズは1 KB であり、250 レコード (= 32 bit record<sup>-1</sup>×250 records = 0.98 KB) 記録することができる。



図 4.20: ピクセルノイズの例:例ではpxNoiseThres[ch]=100, pxNoiseRecordCleanLen[ch]=1280, TMPL\_LEN\_SH=1024 (節 4.10.2)



図 4.21: pxNoiseEDB のビット割り当て

# 4.7.4 Anti-co パルスのトリガ (ACP)

ACP sub-module では anti-co パルスのトリガを行う。ピクセルパルスとは異なり、anti-co パルスは微 分波形は用いず、ADC サンプル値 (acAdcSample – acAdcSamplePedestal) に基づいてパルスを検 出する (図 4.23)。設定したスレッショルドを越えたサンプルからレコードを開始する (acAdcSample – acAdcSamplePedestal  $\geq$  acPulseThres)。レコード長は指定されておらず、(1) カウント数が設定値を上回る (acPulseCnt  $\geq$  acPeakfindLen)、もしくは (2) ADC サンプル値がスレッショルドを下回る (acAdcSample – acAdcSamplePedestal  $\leq$  acPulseThres) までレコード続けられる。それぞれの レコードからはパルスの計測時間 (duration) と ADC サンプル値の最大値が抽出され、図 4.22 のよう なフォーマットで acPulseEDB に記録される。pxPulseEDB, pxNoiseEDB と同様、acPulseEDB も 2 つの bank それぞれに 2 つの side が存在し、同様の機能を果たす (図 4.17)。各 side の容量は 1 KB で、125 レコード (= 64 bit record<sup>-1</sup>×125 records = 0.98 KB) 記録することが可能となる。



Time (ms) 0.5 1.5 2 0 1 2500 Duration 2000 ADC sample - pedestal 1500 heidh 1000 Pulse 500 Pulse threshold 0 Pedestal Arrival time -500 5 0 10 15 20 25 30 Time (sample)

図 4.22: acPulseEDBのビット割り当て

図 4.23: Anti-co パルスの例

# 4.8 その他のモジュール

# 4.8.1 XBox TC Module

XBox TC (tele-command) Module は、SMU から SpaceCard を介して送られてきたコマンドを XBox へと受け渡す機能をもつ。TC Module の state は、INIT と STDBY で初期化を実行し、RUN でタスク を実行する。XBox へのコマンドは、XBox に HK 情報を要求する HK リクエストと XBox の状態やセッ

ティングを変更する実行コマンドの2種類があり、どちらも同じフォーマットで送信される。SpaceCard からの全てのテレコマンドはxBoxTCBufと呼ばれるバッファにRMAP Write で書き込まれる。XBox TC データのフォーマットは、全8 Byte で決められており、初めの6 Byte にテレコマンドデータ、後ろ の2 Byte に TC Module で計算した CRC (MIO TC-CRC)<sup>3</sup>が割り当てられる (図 4.24)。TC Module の state の変更やパラメータの変更は SpaceCard の CPU から行う。もし、TC Module が XBox にコマ ンドを送っている最中に CPU から新しいコマンドが送信されてきた場合、それらは無視され、invalid RMAP access エラーとして認識される。



図 4.24: XBox TC データのビット割り当て

## 4.8.2 XBox HK Module

XBox HK (house-keeping) Module は、XBox からの HK データを SpaceCard を介して SMU へと 受け渡す機能をもつ。HK Module の state は、INIT と STDBY で初期化を実行し、RUN でタスクを 実行する。XBox から送信されてくる HK reply は 3 種類あり、MIO からの HK リクエストに対する reply、MIO からの実行コマンドに対する reply、HK リクエストや実行コマンドに対するレスポンス内 の際のエラー reply である。XBox からの HK データは xBoxHKBuf と呼ばれるバッファに格納され る。xBoxHKBuf は 64 個のブロック (xBoxHKBuf[0]-xBoxHKBuf[63]) からなり、それぞれのブ ロックのサイズは 32 bit である。xBoxHKBuf[0] には、受信した HK やエラーのカウント数などの追 加情報が格納される。SpaceCard からこれらのバッファを RMAP Read することで HK を取得する。



図 4.25: xBoxHKBuf[0] のビット割り当て

## 4.8.3 Clock Module

Clock Module は、MIO ボード上の水晶振動子にてクロックを生成し、クロックを XBox へと届ける 機能をもつ。また、GPS から受信した GPS time と FPGA カウンタとを保存し、照合を行う。Clock Module の state は、INIT と STDBY は初期化のための状態、RUN では BASE\_CLK と SMP\_CLK の 生成と XBox への送信、そして FPGA カウンタと GPS time の保存とラッチを行う。BASE では基本的

<sup>&</sup>lt;sup>3</sup>巡回冗長検査。エラー検出符号の一種。連続するエラーを検出でき、パリティビットを用いたチェックサム方式よりも検 出精度が高い。

に RUN と同様の挙動を示すが、SMP\_CLK の生成と送信は行わない。FPGA カウンタには BaseCnt と 呼ばれるカウンタがある。これは、BASE\_CLK の 5 MHz の立ち上がりに同期したカウンタで、0 - 399 (baseCntRoundup = 320)、もしくは 0 - 399 (baseCntRoundup = 400)<sup>4</sup> の値をとる。BaseCnt が 一周すると、sampleCntL (16 bit) が 1 つ増加する。これは、4.19 s (5.24 s) の長さを持つカウンタで ある。さらに、sampleCntL が一周すると、sampleCntH (16 bit) の値が 1 つ増加する。これは、3.18 day (3.97 day) の長さを持つカウンタである。これらの値と、GPS time の上位 32 bit (upper32bitTI) を、Time-Code [0] でラッチして timeHKBuf と呼ばれるバッファに格納し、絶対時刻を付ける際に利 用される。timeHKBuf の内訳を図 4.26 に示す。



図 4.26: timeHKBufのビット割り当て

# 4.9 SpaceCard ボード

MIO ボードで処理された波形データは、次に SpaceCard ボード上の CPU によって回収され、更なる 波形解析処理が施される。SpaceCard では主に、イベントの時刻付けやグレード付け、最適フィルタ処理 を用いた詳細な波高値解析、そして衛星の上流システムである SMU (Satellite Management Unit) の要 求によって回収されるデータパケットの生成を行う。SpaceCard でのタスク管理は TOPPERS/JSP カー ネル (Toyohashi OPen Platform for Embedded Real-time Systems / Just Standard Profile Kernel) と 呼ばれるリアルタイム OS によって実行される。

#### 4.9.1 SpaceCard ボードの構造

**CPU**: SpaceCard ボードには、三菱重工製 SH4 準拠の CPU「SOI-SOC」が搭載される。SOI-SOC と は、JAXA 宇宙科学研究所が民生用最先端 SOI<sup>5</sup>技術をベースに構築した、耐放射線の論理回路設計・製 造技術を用いて、三菱重工業(株)が製品化した宇宙仕様の SOC<sup>6</sup>である。宇宙空間での宇宙線などにも耐 えられるよう極めて高い放射能耐性を持っている。CPUのクロック数は 60 MHz で、OS には TOPPERS (小節 4.9.2)を採用している。

Memory:様々な用途に応じて複数のメモリが搭載されている。表 4.4 に各メモリのサイズと用途をまとめる。

| 種類     | Size/piece      | # of   | # of | Total size | 用途                          |
|--------|-----------------|--------|------|------------|-----------------------------|
|        | (b)             | pieces | sets | (MB)       |                             |
| EEPROM | $512K \times 8$ | 4+1    | 1    | 2          | メインプログラムの保存領域 (EDAC 機能無し)   |
| SRAM   | $512K \times 8$ | 4 + 1  | 2    | 4          | メインプログラム用の作業メモリ (EDAC 機能無し) |
| SDRAM  | $16M \times 16$ | 2 + 1  | 1    | 64         | データ保存領域                     |

表 4.4: SpaceCard ボードの各メモリ

Interface: SpaceCard ボードには、MIO ボード、SMU、他の SpaceCard ボードとの通信用のインターフェースを持っている。表 4.9.1 に各コネクタの説明をまとめた。

|            | -11          | 1.0. Spaceco |             | · · · · · · |      |          |          |
|------------|--------------|--------------|-------------|-------------|------|----------|----------|
| Other end  | Protocol     | # of         | Connector   | Gender of   | # of | # of in  | # of out |
|            |              | connectors   | shape       | connectors  | pins | channels | channels |
| MIO boards | LVDS (SpW)   | 2            | micro D-sub | female      | 9    | 2        | 2        |
| SpaceCard  | LVDS $(SpW)$ | 0            | micro D-sub | female      | 9    | 0        | 0        |
| SMU        | LVDS $(SpW)$ | 2            | micro D-sub | female      | 9    | 2        | 2        |
| PSU        |              | 1            | D-sub       | female      | 15   |          |          |

#### 表 4.5: SpaceCard ボードのインターフェース

<sup>&</sup>lt;sup>5</sup>Silicon On Insulator の略。絶縁膜上に形成した単結晶シリコンを基板とした半導体、および半導体技術。超高集積回路の高速化・低消費電力化を実現するためのキーテクノロジーとして期待されている。

<sup>&</sup>lt;sup>6</sup>System-on-a-Chip の略。マイクロプロセッサーやメモリーなど、ある装置やシステムの動作に必要な機能のすべてを一つの半導体チップに実装する方式。配線の省略による高速化や、部品点数の削減による消費電力節減、装置の小型化や製造コスト低減などのメリットが期待できる。



図 4.27: SpaceCard ボード外観

# 4.9.2 TOPPERS/JSP カーネル

TOPPERS (Toyohashi OPen Platform for Embedded Real-time Systems) とは、組込みシステム用 リアルタイム OS の業界標準である ITRON 仕様をベースとしたオープンソースなソフトウェア群、も しくはその開発プロジェクトの事を指す。その中でも TOPPERS/JSP (Just Standard Profile) カーネ ルはµITRON4.0 仕様に準拠したリアルタイム OS で、JSP の名前が示す通り、µITRON4.0 仕様のスタ ンダードプロファイル規定に従って実装されている<sup>7</sup>。SpaceCard CPU はこの TOPPERS/JSP カーネ ルを採用し、タスク管理を行っている。タスクのスケジューリングはタスクに与えられた優先度に基づ くプリエンプティブな優先度ベーススケジューリング方式<sup>8</sup>で行われる。タスクは表 4.9.2 のような分割 で優先度が割り振られている。CPU 負荷測定のタスクは一番優先度の低い位置付けであり、CPU が作 業をしていないアイドル時間を使って CPU 負荷を測定する。これらのタスクの内、PSP のユーザータ スクは以下のものがあり、ここで各種 HK の処理や波形データの処理を行う。

7. ユーザ周期タスク(周期起動)

- XBox HK (~ 4 s に 1 回)
- PSP HK (~ 4 s に 1 回)
- Time HK (~ 8 s に 1 回)
- pxPulseEDB, acPulseEDB からのトリガ情報収集 (16 Hz)
- 8. ユーザ非周期タスク(常時起動)
  - 波高値計算タスク
  - 平均波形・ノイズ収集、テンプレート計算タスク

|    | タスク名                              | 優先度 (1 - 16) |
|----|-----------------------------------|--------------|
| 0. | 周期ハンドラ・割り込みハンドラ( Not task)        | 0            |
| 1. | I/O タスク (DMA, RMAP など)            | 1 - 4        |
| 2. | スケジュールタスク (TimeCode に同期して周期起動を制御) | 5            |
| 3. | コマンド取得タスク (周期起動)                  | 5            |
| 4. | コマンド実行 (or 受付) タスク (コマンドが到着時)     | 6            |
| 5. | メモリパトロールタスク (周期起動)                | 7            |
| 6. | 共通テレメトリタスク (周期起動)                 | 8 - 9        |
| 7. | ユーザー周期タスク (周期起動)                  | 10 - 12      |
| 8. | ユーザー非周期タスク (常時起動)                 | 13 - 15      |
| 9. | CPU 負荷測定タスク (アイドル時)               | 16           |

表 4.6: タスクの優先度 (2010年現在)

次節では CPU で行う波形データ処理に関して述べる。

# 4.10 SpaceCard でのデジタル波形処理

SpaceCard 上で行われるイベント関連のタスクに関して説明する。SpaceCard ではピクセルパルスに 対して詳細な波形解析が施される (anti-co パルスに対しては行わない)。イベントパルスの計算タスクは 各ピクセル毎に用意され、それぞれの CPU にてスケジューリングで処理する順序を決めている。各ピ クセルのタスクでは、まず SpaceCard が MIO ボード上の Event Dual Buffer (pxPulseEDB[ch]) 内の トリガ情報を読み込む。このトリガ情報を元に Wave-Form Ring Buffer (pxWFRB[ch]) から波形デー タを転送し、CPU の SRAM に設けられた pxEvent1stFIFO<sup>9</sup>に詰められる。pxEvent1stFIFO に詰 められる前に全てのパルスに対してセカンダリーパルスのサーチ (小節 4.10.1) が行われ、全パルスに対 してグレード付けがなされる (小節 4.10.2)。その後、生成したテンプレート (小節 4.10.4) を用いた最適 フィルタ処理によって詳細な波高値解析を行う (小節 4.10.3)。これらの処理によって得られた各種デー タは pxEventTelemeFIFO へと詰められ、テレメトリーとしてパケットデータ化され、SMU の要求 によって DR に転送される。以下では、上記の波高値解析までの処理内容を述べる。

#### 4.10.1 セカンダリーパルス検出

pxEvent1stFIFO に転送されたピクセルパルスデータは全てに対してセカンダリーパルスのサーチ が行われる。セカンダリーパルスとは1stパルスがトリガされてから874サンプル (or 1748サンプル) 以 内に入射してきたパルスのことを指す。このセカンダリーパルスとの時間間隔に依存して各パルスがグ レード付けされる (小節4.10.2)。セカンダリーパルスのサーチは、CPU によって準備された平均パルス (小節4.10.4) の微分波形を対象パルスの微分波形から差し引くことで行う。これはMIO ボード上での 処理でトリガしきれなかった小さなセカンダリーパルス (EDB に無いトリガ情報)を検出するためでも ある。サーチは pxEvent1stFIFO 内のパルスがトリガされたサンプルから後ろ874 サンプル (or 1748 サンプル) に対して行われる。この際、WFRB から derivative[ch] 値を読み出し、この微分値を用い

<sup>&</sup>lt;sup>7</sup>詳細は http://www.toppers.jp 参照

<sup>&</sup>lt;sup>8</sup>タスクが実行中であっても、より高い優先度のタスクが実行可能となった場合、即座にタスク切り替えを行う方式

<sup>&</sup>lt;sup>9</sup>FIFO (First In, First Out): キューに格納されたデータの処理方法を意味する。処理はキューに格納された順番で行われ、最初に入ってきたものを最初に処理し、次に入ってきたものは最初の処理が終わるまで待たせる、ということを意味している。

て平均パルスと対象パルスの差し引きを行う。得られた差分が設定したセカンダリーパルスに対するス レッショルドレベル secondThres を超えていればセカンダリーパルスとしてトリガを行う (図 4.28)。 トリガされたセカンダリーパルスは pxEvent2ndFIFO に詰められる。pxEvent1stFIFO に詰められ たイベントパルスから 874 サンプル (or 1748 サンプル) はセカンドパルスのサーチのみを行い、それ以 外は行わない。



図 4.28: セカンダリーパルス検出の概要 (TMPL\_LEN\_SH=1024 の場合)

## 4.10.2 グレード付け

トリガされた全ピクセルパルスイベントはそれぞれの隣接したイベントとの時間間隔によって、グレード付けが行われる。anti-co パルスイベントに関してはグレード付けは行わない。グレード付けの 定義を図 4.29 に示す。最も質の高い High-Resolution (HR) イベントは、パルスがトリガされた時間か ら (TMPL\_LEN\_[S|L]H – preTrigPnts[S|L]H)の間に他のパルスイベントが入射していないものに 定義される。TMPL\_LEN\_[S|L]H, preTrigPnts[S|L]H は、それぞれ HR テンプレートの全体の長さ と pre-trigger の長さで、表 4.7 の通り Short か Long かで長さが異なる。デフォルトは Short で取得し、 Long は予備のテンプレート長さである。Medium-Resolution (MR) イベントは、パルスがトリガされ た時間から (TMPL\_LEN\_[S|L]M – preTrigPnts[S|L]M)の間に他のパルスイベントが無いものを指 す。それ以外のイベントパルスは Low-Resolution (LR) イベントとしてグレード付けされる。

グレードは全部で 5 段階 (Hp, Mp, Ms, Lp, Ls; 図 4.29) に分けられる。全ての HR イベントはプラ イマリーイベントである。よりグレードの高いイベントパルス、さらにはセカンダリーパルスよりもプ ライマリーパルスの方が、波高値に他のパルスの影響を受けづらいため、優れたエネルギー分解能が得 られる。Hp, Mp (, Ms) のイベントは、次にそれぞれのテンプレート長さで最適フィルタ処理が施さ れ、波高値解析が行われる。(小節 4.10.3)。TMPL\_LEN\_[S|L][H|M], preTrigPnts[S|L][H|M] は衛 星ミッションを通じて固定値 (Short or Long) である。

| 表 | 4.7: | テ | ン | プ | レー | ト | の | 長さ |
|---|------|---|---|---|----|---|---|----|
|---|------|---|---|---|----|---|---|----|

| 長さ                       | TMPL_LEN_XH | $\mathbf{TMPL\_LEN}\_X\mathbf{M}$ | $preTrigPnts_XH$ | $preTrigPnts_XM$ |
|--------------------------|-------------|-----------------------------------|------------------|------------------|
| Short $(X = \mathbf{S})$ | 1024        | 256                               | 150              | 37               |
| Long $(X = \mathbf{L})$  | 2048        | 512                               | 300              | 75               |



図 4.29: グレード付けの定義 (Short template の場合)

## 4.10.3 最適フィルタ処理

MIOボードでは、Science Module でパルスの波高値を loResPH として計測している。しかしなが ら、実際にはパルスに混入したノイズがそのまま加算されてしまうので、単純にパルスのピーク値をとっ ただけでは、理想とするエネルギー分解能を得ることはできない。そこで、その性能を最大限に引き出 すために、X線パルスの大きさを S/N 比が最大になるように定める最適フィルタ処理を行う。複数の サンプルを用いて、平均化によってノイズを減らしてパルスハイトを求めるというこの手法によって、 ファクター数倍の S/N の改善が行うことができる。ASTRO-H 衛星の SXS ではこの手法を使って詳細 な信号処理を行う。

はじめに最適フィルタ処理について簡単に説明する。まず、取得した X 線パルス D(t) の平均パルス を作成し、周波数空間にフーリエ変換を行う。次に周波数空間において、パルススペクトルにノイズス ペクトル N(f) で重みをつけテンプレート T(t) を作成する (小節 4.10.4)。このテンプレートを個々の パルスとクロスコリレーションをとり、最大になる時の値をパルスハイトとする。これを入射 X 線のエ ネルギーに相当するように規格化を行うとエネルギースペクトルが作成できる。しかし、この最適フィ ルタ処理はX線パルス波形が常に同じであり、パルスとノイズが完全に独立であるという仮定を含んで いることを念頭においておく必要がある。

測定から得られたパルスを D(f) とする。これは周波数空間では、規格化されたモデルパルス M(f) に振幅 A をかけたものにノイズ成分 N(f) が含まれたものであり、

$$D(f) = A \times M(f) + N(f) \tag{4.9}$$

のようにかける。これをモデルパルスと呼ぶ。

振幅 A はノイズを含む生データとパルス波形のモデルとの差を最小にするものである。つまり、実際 に得られたパルスとモデルの残差  $\chi$  を最小にするような A を最小二乗法で求めてやれば良い。

$$\chi^{2} \equiv \int_{-\infty}^{\infty} \frac{|D(f) - A \times M(f)|^{2}}{|N(f)|^{2}} \mathrm{d}f$$
(4.10)

と書けるので、 $\chi^2$ の微分が0になるようなAは、

$$A = \frac{\int \frac{DM^* + D^*M}{2|N|^2} \mathrm{d}f}{\int \frac{|M|^2}{|N|^2} \mathrm{d}f}$$
(4.11)

で与えられる。D(f)、M(f)は実関数のフーリエ成分なので $D(-f) = D(f)^*$ 、 $M(-f) = M(f)^*$ となるので、

$$\int_{-\infty}^{\infty} \frac{D(f)M(f)^*}{2|N(f)|^2} df = -\int_{\infty}^{-\infty} \frac{D(-f)M(-f)^*}{2|N(f)|^2} df = \int_{-\infty}^{\infty} \frac{D(f)^*M(f)}{2|N(f)|^2} df$$
(4.12)

が成立することから、

$$A = \frac{\int_{-\infty}^{\infty} \frac{DM^*}{|N(f)|^2} df}{\int_{-\infty}^{\infty} \frac{|M|^2}{|N|^2} df}$$
(4.13)

$$= \frac{\int_{-\infty}^{\infty} \frac{D}{M} \left|\frac{M}{N}\right|^2 \mathrm{d}f}{\int_{-\infty}^{\infty} \left|\frac{M}{N}\right|^2 \mathrm{d}f}$$
(4.14)

と記述できる。この式から A は  $|M(f)/N(f)|^2$  を重みとした場合の周波数空間での S/N 比 D(f)/M(f)の平均値を表していることがわかる。また、式 (4.14) は  $\mathcal{F}^{-1}$  を逆フーリエ変換として、

$$T(t) \equiv \mathcal{F}^{-1}\left(\frac{M(f)}{|N(f)|^2}\right)$$
(4.15)

$$A = \frac{\int_{-\infty}^{\infty} D(t) \mathcal{F}^{-1}\left(\frac{M(f)}{|N(f)|^2}\right) dt}{\int_{-\infty}^{\infty} \left|\frac{M(f)}{N(f)}\right|^2 df} = \frac{\int_{-\infty}^{\infty} D(t) T(t) dt}{\int_{-\infty}^{\infty} \left|\frac{M(f)}{N(f)}\right|^2 df}$$
(4.16)

と変形できる。ここで用いた T(t)を最適フィルタのテンプレートと呼ぶ。

従って、例えば X 線の入射によってあるパルス D(t) が得られたとすると、テンプレートを用いることで、パルスハイト H は、

$$H = S \int D(t)T(t)dt \tag{4.17}$$

あるいは、離散的なデータに対して、

$$H = S \sum_{\mathrm{I}} D_{\mathrm{I}}(t) T_{\mathrm{I}}(t) \tag{4.18}$$

となる。ここで S は最適な規格化定数、 $D_{I}(t)$ 、 $T_{I}(t)$  はデジタル化されたパルスデータとテンプレート である。従って、最適フィルタ処理を行うためには、平均パルス波形 M(f) とノイズパワースペクトル  $N^{2}(f)$  を用意すれば良いことになる。ノイズが完全に白色である時、すなわち周波数空間でフラットな 場合は、テンプレートは元の平均パルスと一致する。

#### 4.10.4 テンプレート計算

SpaceCard では最適フィルタ処理で用いるテンプレートの計算を行う。テンプレート計算の例を図 4.30, 4.31, 4.32 に示す。テンプレート計算には平均パルスのパワースペクトル M(f) とノイズスペクト  $\mathcal{N}(f)$  が必要となる。

Pulse:テンプレートのモデルパルスには、他のパルスの混入していないクリーンなイベントパルスだけを多数選び、それらを平均することで得られた平均パルスを用いる。CPU ではグレードの高いイベントパルス (Hp) を平均することで平均パルスを生成する<sup>10</sup>。得られた平均パルスは高速フーリエ変換され、パルスのパワースペクトル *M*(*f*) が導出される (図 4.30)。

Noise:また、節4.7.3のアルゴリズムで収集されたノイズレコードの内、新しい数百個のノイズレコードを用いてノイズのパワースペクトルを生成する。パルス同様、ノイズレコードは高速フーリエ変換がなされ、フーリエ変換後の全データを平均することで、ノイズのパワースペクトルを生成する(図4.31)。

ー度、パルスとノイズのパワースペクトル M(f), N(f) の生成が完了すれば、式 4.15 に従ってテ ンプレートのパワースペクトル T(t) が導出できる (図 4.32)。テンプレートは表 4.7 の 2 通りの長さ TMPL\_LEN\_XH, TMPL\_LEN\_XM で用意される。最適フィルタ処理の際、HR はTMPL\_LEN\_XH、 MR は TMPL\_L-EN\_XM の長さのテンプレートを用いて波高値解析が行われる。

決められたテンプレート長さという有限区間であるため、フーリエ変換を行う際に有限区間外は0と みなされてしまう。他のパルスの無い十分に長い HR テンプレートであれば、レコードの端が連続的に 減衰して0に収束すると考えられるので変換の際の影響は少ない。しかし、長さの短い MR テンプレー トでは区間外のイベントからの漏れ込みが考えられ、不連続が生じてしまう。そこで両側にいくにつれ て減衰するよう、ハニング窓関数 (Hanning window)<sup>11</sup>を掛けてから高速フーリエ変換を行う方法があ る。しかし、一般に窓関数を導入するとエネルギー分解能が劣化することが知られており、現段階で導 入するかは未決定である (2011 年 1 月現在)。

<sup>&</sup>lt;sup>10</sup>平均パルスでセカンダリーパルスのサーチを行わなければグレード付けが行えないため、初観測時には衛星にはあらかじめ保存しておいた平均パルスを使用する。

<sup>&</sup>lt;sup>11</sup>中央値が1のRaised Cosineの波形になっている窓関数。サイドローブが比較的小さいため、小さい電力のスペクトルを 検出するのに向いている。



図 4.30: 平均パルスの例: (左) 平均パルスの形状 (右) 平均パルスのパワースペクトル



図 4.31: ノイズの例: (左) ノイズレコード (右) 平均ノイズのパワースペクトル



図 4.32: テンプレートの例: (左) テンプレートのパワースペクトル (右) 最適フィルタテンプレート

# 第5章 MIO – SpaceCard 性能評価試験

本章では、PSP-BBMの性能を検証するため、MIOボード – SpaceCardボードを接続し、PSPで実現 する各機能が正常に動作しているかを検証する。なお、以下の検証試験内容は、試験によってUserFPGA versionが更新されているため、挙動が異なる場合がある。そのため以下では、試験時に扱う FPGA ver. を記載した上で進めていく。主に行った性能評価試験は以下の通りである。

- 1. PSP 搭載機器の SpaceWire 規格適合試験<sup>1</sup>
- 2. Time-Code 配信機能試験<sup>1</sup>
- 3. MIO SpaceCard 間通信試験
- 4. MIO SpaceCard 間通信速度測定試験
- 5. XDS PSP 間インターフェース試験
- 6. MIO ScienceModule での Science データ取得試験
- 7. MIO ScienceModule の WFRB, EDB の動作確認試験
- 9. MIO ClockModule の動作確認試験<sup>1</sup>
- 10. MIO Master Slave 接続試験<sup>1</sup>
- 11. SpaceCard 上 CPU の処理速度測定試験

#### Link Analyzer

PSP 内の 2 ボード間の通信やその他の PSP 周りの関連機器との接続は SpaceWire 規格 (節 3.4) で行われている。試験において、SpaceWire に規格に沿って PSP が正常に通信を行っていることを確認する ために、SpaceWire パケットデータの中身を「SpaceWire Link Analyzer (LA)」と呼ばれる機器を接続 の間に挟むことで直接確認する。LA は、star dundee 社によって開発された SpaceWire のリンクを監 視する装置で、SpaceWire リンクの間に LA を挟むことで、Time-Code や RMAP パケットなど任意 の条件でトリガをかけて、接続状態を監視することができる。

# XBox Digital Simulator (XDS)

PSP の機能試験を行うためには、Science データや HK の受信、クロックの送受信、そしてコマンド 送信といった XBox とのやりとりが必要となる。XBox の実機は NASA/GSFC で開発中であるため、日 本側での PSP 試験用に XBox の入出力を模擬した XDS (XBox Digital Simulator) が GSFC 側から提供 されている (図 5.1)。XDS は、計8 チャンネル分のデータセットを記録しておくことができ、必要に応 じてダイヤルを切り換えて出力データを変更することができる。通常は第7章で使用している波形デー タと同等のもので試験を行う。XDS 内のデータの書き換え手順は付録 A に記載する。

<sup>1</sup>埼玉大 下田修論参照





図 5.1: XBox Digital Simulator 外観とブロック図

# 5.1 MIO – SpaceCard 間通信試験

#### [FPGAver.=6]

MIO と SpaceCard 間の SpaceWire を用いた通信の試験を行った。まず、MIO の SDRAM のある領 域に SpaceCard からインクリメントデータを RMAP Write で書き込む。次に、同じ領域を SpaceCard から RMAP Read で読み出し、インクリメントデータが保存されていることを確認する。 実験のセッ トアップを図 5.2 に示す。



図 5.2: セットアップ

MIO では SDRAM に 1 KB 以上のアクセスをするにはレジスタの値の変更が必要である。さらに、 SDRAM の動作タイミングの微調整の必要もある。表 5.1 に SDRAM 使用時のレジスタの変更箇所をま とめる。

表 5.1: レジスタの変更値

| レジスタ                | アドレス                              | 値           |
|---------------------|-----------------------------------|-------------|
| 1 KB 以上の read/write | $0x0000\ 0008$                    | 0x0000 0001 |
| SDRAM のタイミング調整      | $0 \mathrm{xFEC0} 002 \mathrm{C}$ | 0x0000 0007 |

RMAP パケットの中身を確認するために、Link Analyzer (LA) を接続している。はじめ 2KB のイ ンクイメントデータを RMAP Write し、同じ領域の 2 KB のデータを RMAP Read した。その結果、 RMAPwrite/Sent パケットと RMAP Read/Reply パケットのデータ部分が一致しており、書き込ん だデータと読み込んだデータは全て一致していることを確認した。以上から、MIO と SpaceCard 間の SpaceWire を用いた通信は正常であることが確認できた。

# 5.2 XDS – PSP 間のインターフェース試験

[FPGAver.=8.0]

XBox と PSP 間の 9 つの信号を確認するため、XDS を図 5.3 のように接続し、XDS と MIO ボード 間に BOB を挟むことで信号波形をオシロスコープで確認した。まず、双方から信号を流さない状態で 各信号ペアの電圧値を測定した。結果を表 6.2 にまとめる。いずれも Active 側に入っていないことを確 認した。



図 5.3: 各機器の接続

| LVDS 端子                           | 電圧値 (V) | High/Low (Active) | LVDS 端子       | 電圧値 (V) | High/Low (Active) |
|-----------------------------------|---------|-------------------|---------------|---------|-------------------|
| TLM_CLK(+)                        | 1.09    | Low (High)        | $SMP_CLK(+)$  | 1.08    | Low (High)        |
| $\mathrm{TLM}_{-}\mathrm{CLK}(-)$ | 1.48    |                   | $SMP_CLK(-)$  | 1.44    |                   |
| $SCI_ENA(+)$                      | 1.48    | High (Low)        | $CMD_DAT(+)$  | 1.11    | Low (High)        |
| $SCI_ENA(-)$                      | 1.08    |                   | $CMD_DAT(-)$  | 1.48    |                   |
| $SCI_DAT(+)$                      | 1.09    | Low (High)        | $CMD_ENA(+)$  | 1.48    | High (Low)        |
| $SCI_DAT(-)$                      | 1.48    |                   | $CMD_ENA(-)$  | 1.12    |                   |
| $HK_ENA(+)$                       | 1.48    | High (Low)        | $BASE_CLK(+)$ | 1.07    | Low (High)        |
| $HK_{-}ENA(-)$                    | 1.07    |                   | $BASE_CLK(-)$ | 1.44    |                   |
| $HK_DAT(+)$                       | 1.07    | Low (High)        |               |         |                   |
| $HK_DAT(-)$                       | 1.45    |                   |               |         |                   |

表 5.2: 各信号線の電圧値

# 5.2.1 BASE\_CLK, SMP\_CLK, TLM\_CLK

PSP の MIO ボードで生成されたクロック BASE\_CLK を XBox へ送信し、その波形を確認する。SpaceCard から、MIO 上 FPGA のレジスタに RMAP Write し、Clock Module の state を CLK\_BASE へと変更することで BASE\_CLK を発 振させた。CLK\_BASE state では、SMP\_CLK は停止され、 BASE\_CLK のみが発振される。レジスタの変更箇所は表 5.3 である。BASE\_CLK 発振後にオシロスコープで波形の確認を した (図 5.4)。LVDS はノイズ対策により差動出力であるため 各信号の +- の差分波形を確認する。周波数 5 MHz が 800 mV の電位差で再現された。



図 5.4: BASE\_CLK の信号波形。 マゼンダ線は BASE\_CLK(+)(-) の 差分を表す。

表 5.3: レジスタの変更箇所

| レジスタ名                 | アドレス       | 書き込み値      | 備考                          |
|-----------------------|------------|------------|-----------------------------|
| XBoxClkOutInhibitFlag | 0x100020D0 | 0x00000000 | enable=0, disable=1         |
| ClockModuleState      | 0x100020C0 | 0x00000002 | 0=CLK_INIT, 1=CLK_STDBY     |
|                       |            |            | $2 = CLK_BASE, 3 = CLK_RUN$ |

同様にして、XBox から PSP へと返すクロック SMP\_CLK の波形を確認する。レジスタ変更を行い、 Clock Module の state を CLK\_RUN に変更して SMP\_CLK を発振し、波形を確認した (図 5.5)。Sampling rate である 12.5 kHz の周期で信号が送られていることを確認した。

また、XBox が BASE\_CLK を受けて TLM\_CLK を返しているかを確認した (図 5.10)。こちらも 5 MHz でクロックを返してきていることが確認できた。

| 表 5.4: | レジスタの変更箇所 |
|--------|-----------|
|--------|-----------|

| レジスタ名                    | アドレス       | 書き込み値      | 備考        |
|--------------------------|------------|------------|-----------|
| ${\it clockModuleState}$ | 0x100020C0 | 0x00000003 | 3=CLK_RUN |



図 5.5: SMP\_CLK の信号波形。マゼンダ線は SMP\_CLK(+)(-) の差分を表す。



図 5.6: TLM\_CLK の信号波形。マゼンダ線は TLM\_CLK(+)(-) の差分を表す。

# 5.2.2 CMD\_ENA & CMD\_DAT / SCI\_ENA & SCI\_DAT / HK\_ENA & HK\_DAT

次に、XBox へ SendHKAll コマンド (0x0040 0F34 0FC8 6576) を送信し、CMD\_ENA と CMD\_DAT の波形の確認を行った。SendHKAll コマンドとは、XBox へすべての HK 情報 (196 byte) の送信を要 求するコマンドである。XBox ヘコマンドを送信するために、XBoxTCModule と XBoxHKModule の state を RUN へと変更した。RMAP Write したレジスタは表 5.5 にまとめる。

表 5.5: レジスタの変更箇所

| レジスタ名             | アドレス       | 書き込み値      | 備考                      |
|-------------------|------------|------------|-------------------------|
| XBoxTCModuleState | 0x10002008 | 0x00000002 | 0=XTC_INIT, 1=XTC_STDBY |
|                   |            |            | 2=XTC_RUN               |
| XBoxHKModuleState | 0x1000200C | 0x00000002 | 0=XHK_INIT, 1=XHK_STDBY |
|                   |            |            | 2=XHK_RUN               |

SendHKAll コマンドを送信した際の CMD\_ENA の範囲内で有効になっている CMD\_DAT の波形から データ内容を読み取った (表 5.8)。送信した SendHKAll コマンドと同じ値を送信できていることが確認 できた。また、図 5.9 の波形から、HK\_ENA の有効範囲は HK データ長と同等の時間長さであった (  $314\mu s = 196$  Byte(HK のレスポンスサイズ)×8 bit×0.2 $\mu s$  (転送速度:5 MHz))。

今度は、XDS からの Science データを受信するために Science Module の state を RUN に変更し、 SCI\_ENA と SCI\_DAT の波形を確認した。変更レジスタは表 5.6 である。

#### 表 5.6: レジスタの変更箇所

| レジスタ名          | アドレス       | 書き込み値      | 備考                                |
|----------------|------------|------------|-----------------------------------|
| SciModuleState | 0x10002000 | 0x00000002 | $0 = $ SCI_INIT, $1 = $ SCI_STDBY |
|                |            |            | 2=SCLSTDUP, 3=SCLRUN              |

図 5.10 の SCI\_ENA に関しても、HK\_ENA の有効範囲は HK データ長と同等の時間長さであった (62.4  $\mu$ s × 312 bit (SCI\_DAT のサイズ) × 0.2  $\mu$ s (転送速度:5 MHz))。

| Agilent Technologies THU JUL 29 02:23:11 2010 |                |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|-----------------------------------------------|----------------|-------------------|--------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5000/ 2 :                                     | 5000/ 🚦 1      | .00V/ 🚦 '         | 1.00V/ 🔆                 | 5.960% 2         | .000%/ Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ł 🚺 1.26V |
|                                               |                |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| TO MANY THE PARTY                             |                |                   |                          |                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| •                                             | -turno         | m                 | America A                | ·····            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                               |                |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                               |                |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                               |                |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| e                                             | -              | and the second    | American                 | anna             | manin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|                                               |                |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                               |                | n din meneration. | ar fan de skere en jally | are all a second | an that the state of the state | 1         |
|                                               |                |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                               |                |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                               | فالتعقل والطرا |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 5<br>5                                        |                |                   |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| AV - 12 900000                                |                | 1/1/              | - 70 125kUz              |                  | AV(2) = -1.995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75V       |
| - 12.800000                                   | Source         | 17 <u>4</u> X -   | Y 1                      | ) X1             | 1.000 X2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | € v1 v2   |
| Manual                                        | 2              |                   |                          | -800.000ns       | 12.0000us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 11 X2   |

図 5.7: CMD\_ENA (黄,緑) と CMD\_DAT (青,赤) の信号波形。マゼンダ線は CMD\_ENA(+)(-) の 差分を表す。



図 5.9: HK\_ENA (黄,緑)とHK\_DAT (青,赤)の 信号波形。マゼンダ線はHK\_ENA(+)(-)の差分 を表す。

| Bit (2 <b>進数</b> )  | 0000 | 0000 | 0100 | 0000 |
|---------------------|------|------|------|------|
| Hex (16 <b>進数</b> ) | 0    | 0    | 4    | 0    |
|                     | 0000 | 1111 | 0011 | 0100 |
|                     | 0    | F    | 3    | 4    |
|                     | 0000 | 1111 | 1100 | 1000 |
|                     | 0    | F    | С    | 8    |
|                     | 0110 | 0101 | 0111 | 0110 |
|                     | 6    | 5    | 7    | 6    |

図 5.8: オシロスコープの波形から読み取った CMD\_DAT の中身。



図 5.10: SCLENA (黄,緑) と SCLDAT (青,赤) の信号波形。マゼンダ線は SCLENA(+)(-)の差 分を表す。

# 5.2.3 各信号間のの Delay

# BASE\_CLK & TLM\_CLK

PSP から BASE\_CLK 信号を送信してから、XBox から TLM\_CLK 信号が帰ってくるまでの Delay を 測定した。オシロスコープで確認した波形を図 5.11 に示す。波形から BASE\_CLK と TLM\_CLK の Delay は、14 ns であることが分かった。

# SMP\_CLK & SCI\_ENA

PSP が SMP\_CLK 信号を送信してから、SCLENA 信号が active low になるまでの時間 (Time window) を測定した (図 5.12)。波形より、Delay は 20 µs であることが分かる。つまり、XDS との接続試験時 は、sciEnaDelayLower と sciEnaDelayUpper で決まる Time window の範囲を 20 µs が収まるよう に設定すればよい。

#### CMD\_ENA & HK\_ENA

続いて、PSP から XBox へ HK を要求するコマンドを送信してから、PSP へ HK が返ってくるま での時間を測定した。オシロスコープで確認した波形を図 5.13 に示す。PSP のコマンド送信が終わり、 CMD\_ENA が OFF になってから XBox の HK 送信が終わり、HK\_ENA が OFF になるまでの時間は、 41.8 ms であった。



図 5.11: BASE\_CLK (黄, 緑), 図 5.12: SMP\_CLK (黄, 緑), 図 5.13: CMD\_ENA (黄, 緑), TLM\_CLK (青, 赤) SCLENA (青, 赤) HK\_ENA (青, 赤)

以上により、XDS – PSP-BBM 間の 9 本の信号全てが正常に出力されていることを確認された。

# 5.3 MIO ScienceModule での Science データ取得試験

XDS 内部に保持しているデータを用いて、PSP-BBM によるサイエンスデータ取得試験を行った。こ の時のセットアップを図 5.14 に示す。はじめに、MIO の Science Module の state を RUN にして XDS ヘクロック配信を行う。クロックを受け取ると、XDS はサイエンスデータの送信を開始する。MIO で は、節 4.7 で説明したモジュールのトリガ機能でこのデータを処理し、WFRB と EDB に保存する。最 終的に WFRB を SpaceCard で RMAP Read して、PSP で受けとったデータと XDS に保存されている データの比較確認を行う。また、EDB の中身も RMAP Read で読み出し、trigPtr の確認を行った。



図 5.14: セットアップ

XDS のダイアル 1 のチャンネル 0 のデータを 10 秒間取得し (ScienceModule を 10 秒間 RUN にした)、WFRB の中身を確認した。WFRB のデータの先頭の SampleCnt は DelayBuffer のサイズから始まっており (ver.2 では 65)、XDS に保存されているデータの 65 番目以降に一致した。次に、EDB の 先頭の trigPtr と、Linux 上でのシミュレーションソフトウェアである sxspspsim (章 7) に同様のデー タを入力したときの trigPTr の比較を行い、一致することを確認した。以上のように、WFRB と EDB ともに正常なデータが保存されていることが確認できた。

# 5.4 SpaceCard 処理速度測定

PSP-BBMの SpaceCard ボード (#10)単体を用いて、SpaceCard の処理速度を測定した。この測定 では、CPU上でパルスのトリガと最適フィルタ処理を行い、CPU の計算時間をカウントする。パルス のトリガは、CPU で MIO と同じ波形処理のアルゴリズムを組んで行った。最適フィルタ処理で使用す るテンプレートは、ノイズ無しの平均パルスを用いた。通常、最適フィルタ処理において波形とテンプ レートの相関をとる際、テンプレートを比較する箇所を対象波形のピークとその前後にシフトさせた場 合の複数回計算を行い、 $\chi^2$  が最小となる所で波高値 (PHA)を決定するが、今回はシフト量を常に 0 と して 3 回計算を行うこととした。使用したデータは図 5.15 で示した、テンプレートと同じノイズ無し 平均パルスが連続的に並んだデータを使った。各グレード毎の処理速度を比較するために、それぞれパ ルスの到来する時間間隔を変化させ、パルスが全て同じグレード (HR, MR, LR) となるデータを準備 した。



図 5.15: CPU で処理させる波形データ

まず、コンパイラの最適化オプション無しで、CPUを100%使用した場合の処理速度の結果を表5.7 に 示す。節3.3.1 にも挙げられているように、SXSの要求値では150 cts/s/array であるため、PSP-A, B の2系統合わせてSpaceCard4ボード構成の場合、1ボード当たりの要求値は37.5 cts/sとなる。表5.7 の結果より、short templateであれば4ボード構成で十分に要求値を満たせる。しかし、long template で計算する場合、HRとMRが混ざったイベントであれば4ボード構成でも満たせそうだが、十分とは 言えない。なお、LRの最適フィルタ処理時間が短いのは、対象パルスと平均パルスの微分波形の差分 でレコード長分セカンダリーパルスを探すため、あまり時間がかからないためである。

| - Long template  |           |                      |                        |              |  |  |
|------------------|-----------|----------------------|------------------------|--------------|--|--|
| グレード             | イベント数     | 処理時間                 | (最適フィルタ+トリガ)           | カウントレート      |  |  |
| LH               | 200       | $5213 \mathrm{\ ms}$ | (1483  ms + 3689  ms)  | 38.4  cts/s  |  |  |
| LM               | 622       | $11707~\mathrm{ms}$  | (1007  ms + 10554  ms) | 53.1  cts/s  |  |  |
| LL               | 2487      | $38011 \mathrm{~ms}$ | (80  ms + 37594  ms)   | 65.4  cts/s  |  |  |
| - Short template |           |                      |                        |              |  |  |
| SH               | $218^{1}$ | $2455~\mathrm{ms}$   | (600  ms + 1818  ms)   | 88.8  cts/s  |  |  |
| SM               | 622       | $5900 \mathrm{ms}$   | (526  ms + 5256  ms)   | 105.4 cts/s  |  |  |
| SL               | 2487      | $17911 \mathrm{ms}$  | (60  ms + 17569  ms)   | 138.9  cts/s |  |  |

表 5.7: 最適化オプション無しの CPU 処理速度

<sup>1</sup>イベント数にバグ有り(本来は200)。

次に、上記と同じプログラムを最適化をかけてコンパイルを行った。最適化オプションは処理速度優先のものをかけて実行している。今回も CPU を 100%使用して処理を行った。表 5.8 が処理速度の結果である。最適化オプション無しの場合に比べて、2 倍以上の処理速度が実現できた。この結果より、SpaceCard 4 ボード構成であれば、HR のイベントだけであっても、1 ボード当たりの CPU ロードは short template の場合は 17%, long template の場合は 38%程度で処理が可能であることが分かった。これにより、SpaceCard 4 ボード構成で十分に SXS の要求値を満たせると言える。

| - Long template  |           |                      |              |              |  |  |
|------------------|-----------|----------------------|--------------|--------------|--|--|
| グレード             | イベント数     | 処理時間                 | (最適フィルタ+トリガ) | カウントレート      |  |  |
| LH               | $218^{1}$ | $2199~\mathrm{ms}$   | (ログ無し)       | 99.1  cts/s  |  |  |
| LM               | 622       | $5177 \mathrm{\ ms}$ | ( // )       | 120.1  cts/s |  |  |
| LL               | 2487      | $16272~\mathrm{ms}$  | ( // )       | 152.8  cts/s |  |  |
| - Short template |           |                      |              |              |  |  |
| SH               | 200       | $927 \mathrm{\ ms}$  | ( // )       | 215.7  cts/s |  |  |
| SM               | 622       | $2496 \mathrm{\ ms}$ | ( // )       | 249.2  cts/s |  |  |
| SL               | 2487      | $7033 \mathrm{\ ms}$ | ( // )       | 353.6  cts/s |  |  |

表 5.8: 最適化オプション (スピード優先) を付けた CPU 処理速度

<sup>1</sup>イベント数にバグ有り(本来は200)。

# **5.5** データ転送速度測定

MIO ボード – SpaceCard 間のデータ転送速度の測定を行った。この試験では、MIO ボードの SDRAM 内のバッファに収められたデータを SpaceCard 側から要求 (RMAP Read) し、MIO から SpaceCard に データを転送する際にかかった時間を測定することで、データ転送速度を求める。これを MIO ボードと SpaceCard ボードの枚数を変えて行うことで、要求速度を満たす最適なボード構成を調べた。MIO ボー ドからの波形データの読み出しの際に要求される速度は、サンプリングレートに応じて

= 
$$12.5 \text{ kHz} (15.625 \text{ kHz}) \times 36 \text{ bit} \times 18 ピクセル$$

$$=$$
 7.2 Mbps (9 Mbps)

と求められる。サンプリングレート 15.625 kHz の場合でも要求を満たせるよう、最低 9 Mbps は確保で きるかを検証する。節 3.4 で述べたとおり、SpaceWire のデータリンクを流れるデータは全てパケット の集合で通信されている。そのため、RMAP Read のパケットサイズを 0.5, 1, 2, 4, 8, 16 KByte と場 合分けして測定を行った。なお、SDRAM 内から読み出すデータサイズは 4 MB とし、各パケットサイ ズで転送が完了するまでの CPU 空き時間も同時に測定した。

#### 5.5.1 1 MIO + 1 SpaceCard 構成の場合

まず、1つの SpaceCard から 1 つの MIO 上のデータを RMAP Read した際のデータ転送速度を計測 した。測定結果を図 5.16 に示す。PSP は 2 系統 (PSP-A, PSP-B) 搭載されるが、1 系統当たりのボー ド構成が (1 MIO + 1 SpaceCard) の 2 ボード構成の場合と、(2 MIO + 2 SpaceCard) の 4 ボード構 成の場合の 2 種類を想定して評価を行った。典型的なデータのアクセスサイズは 4 KB<sup>2</sup>が想定されてい る。パケットサイズ 4 KB 付近で検証すると、1+1 の 2 ボード構成の場合では、要求速度 (9 Mbps) に 達しておらず、パケットサイズを大きくしても不足していることが分かる。2+2 の 4 ボード構成にした 場合、単純に処理するデータ量は半分になるので要求速度も半分 (4.5 Mbps) となるため、要求速度を 満たせている。また、CPU のアイドル時間の割合を見てみると、パケットサイズ 4 KB で 30 %程度と 低く、データの RMAP Read だけで CPU の半分以上を占有してしまっていることが分かった。



図 5.16: 1 MIO – 1 SpaceCard 間の転送速度。赤い点線はそれぞれ 1+1 (9 Mbps), 2+2 (4.5 Mbps)の ボード構成の場合の要求速度。

# 5.5.2 1 MIO + 2 SpaceCard 構成の場合

次に、2つの SpaceCard から1つの MIO 上のデータを RMAP Read した際のデータ転送速度を計測 した。測定結果を図 5.17 に示す。2台の SpaceCard から同時に MIO の SDRAM へ RMAP Read を行 い、それぞれの転送速度足し合わせた転送速度を求めた。プロット (橙色)を見てみると、パケットサイ ズが2 KB 以上で要求速度 (9 MB)を満していることが分かる。これより、2つの SpaceCard でデータ の読み込みを分担することで十分に要求速度を達成できることが分かった。また、CPU 使用率を見てみ ると、アイドル時間の割合がパケットサイズ4 KB 時に 40 %程度と低く、依然として CPU の負荷が大

<sup>&</sup>lt;sup>2</sup>1 パケット内に 1 record length (32 bit×1024 sample) 分が収まる計算。
#### きいことが問題となっている。



図 5.17:1 MIO – 2 SpaceCard 間の転送速度。赤い点線は要求速度 (9 MB)。

以上の結果より、要求されるデータ転送速度を満たすことのできる PSP 1 系統当たりのボード構成は、 (2 MIO ボード + 2 SpaceCard ボード)、もしくは (1 MIO ボード + 2 SpaceCard ボード) であること が分かった。しかし、いずれの場合でも CPU 使用率が想定よりも高いことが分かった。CPU で処理を 行うタスク (小節 4.9.2 参照) は複数存在し、データ読み出しに半分以上使用することはパフォーマンス 的に望ましくない。本測定で使用した PSP-BBM 仕様の SpaceCard ボードでは、EM (FM) に実装予定 である SpaceCard 上の CPU I/F FPGA に接続される高速ポートおよび SpaceWire ルータが実装され ておらず、MIO ボードは CPU 上の SpaceWire ルータのポートと直結している。

これらの測定結果から、4 ボード構成 (2 MIO ボード + 2 SpaceCard) では各ボードの接続が増え、 機能試験が複雑化するため、コストと時間の面を考慮して性能実証モデル (EM) では、3 ボード構成 (1 MIO ボード + 2 SpaceCard) で製作を進めることが決定した (2010 年 1 月現在)。また、PSP-EM では 高速ポートが実装されるため、通信速度 · CPU 負荷率が共に改善することが見込まれている (見積もり 値: 8.3 Mbps, 52 %)。

## 第6章 Xbox-BBM – PSP-BBM 噛み合わせ試験

本章では、2010 年 7 月 28 日 ~ 8 月 6 日に NASA/GSFC (Goddard Space Flight Center) にて行った XBox-BBM (Bread Board Model: 試験用モデル) と PSP-BBM の噛み合わせ試験について述べる。本 試験の目的は、NASA 開発担当の XBox-BBM と、日本開発担当の PSP-BBM とを接続して双方の間の 電気インタフェースの確認を行い、検出器からの信号を正常に PSP 側で取得することを目的としてい る。実際の検出器は開発段階であるため、今回は検出器を模擬した Detector simulator を用いる。試験 内容は以下のとおりである。

- 1. XBox-BBM PSP-BBM 間インターフェース試験
- 2. Detector simulator からの Science データ取得試験
- 3. XBox-BBM PSP-BBM 間のコマンド / レスポンス試験
- 4. ADRC-BBM の RMAP 通信試験 ( 埼玉大 下田修論参照)

## 6.1 XBox-BBM

NASA 側が準備した XBox-BBM は、XBox-A, XBox-Bの2系統のボードを一つの筐体に収めることのできる ものが提供された。今回は XBox-A に当たるボードのみ が搭載されており、半分の18 ピクセルが処理可能であ る。XBox-BBM のもつ各端子の配置と対応は以下の通り である。

図 6.2 の左上から

J203: XBox-Aのpx[0]-[8] (本実験ではボード無し)
J202: XBox-Aのpx[9]-[17] (本実験ではボード無し)
J232: PSP-A
J222: XBox-Aの電源
J210: XBox-A& XBox-B共用のGND
J234: PSP-B
J224: XBox-Bの電源
J204: XBox-Bのpx[0]-[8]
J205: XBox-Bのpx[9]-[17]

XBox のシャーシ GND は Ditector-sim を通じて Factory GND へ接続



 $\boxtimes$  6.1: NASA/GSFC  $\sigma$  XBox-BBM



## 6.2 Detector Simulator

Detector simulator (以下 Detector-sim) は、実際の Detector の信号を模擬したダミーパルスのアナログ信号を送出する装置 である。今回、GSFC 側が用意した Detector-sim は現在運用中 の X 線天文衛星「すざく」XRS の地上試験でも用いられたも のである。Detector-sim から XBox-BBM 内における波形信号 の処理回路を図 6.4 に記す。

Detector-sim で初めに生成されるパルスは、波高値が 10 V の 下に凸の波形であり、周期 1 Hz (変更可能)の単発パルスが連 続的に出力される。10 V と高い電圧のパルスしか出せないた め、抵抗を通すことで出力電圧を mV 単位に下げている。



図 6.4: Detector-sim と XBox の回路図



図 6.3: Detector-simulator 外観

## 6.3 セットアップ

#### 6.3.1 LVDS 信号線の電圧チェック

まず、Detector-sim と XBox-BBM の接続して GND の確認を 行った。XBox の各端子の接続先を表 6.1 にまとめる。Detectorsim と XBox の GND レベルが同じになるよう GND 同士を接 続し、Detector-sim 側を Factory-GND へ落としている。電源 は AC 電源 119.5 V から変圧して使用する。Detector-sim から の 18 ピクセル分のアナログ波形信号は、分岐したケーブルを 用いて 9 ピクセルずつ XBox に出力する。

XBox の D-sub 端子 J234 に BOB を接続し、XBox – PSP 間の全 9 つの信号線の電圧チェックを行った。なお、電圧測定

| XBox | Detector-sim (Cable ID)        |
|------|--------------------------------|
| J204 | J402 (P204)                    |
| J205 | J402 (P205)                    |
| J210 | J420                           |
|      | 電源 (DC)                        |
| J224 | $\pm$ 25V, $\pm$ 25V, $\pm$ 8V |

#### 表 6.1: 各端子の接続先

はそれぞれの信号線のシールドが導通していることを確認した上で TLM\_CLK のシールドを GND に落 としてから行っている。表 6.2 より、TLM\_CLK は仕様上、Low で - 端子側の電圧値が低いはずである が、これは XBox に PSP を接続していないためであると考えられる (図 6.8 参照)。

#### 6.3.2 Merge XBox – PSP

XBox 側と PSP 側の抵抗チェックと電圧チェックを済ませたところで、Detector-sim – XBox と PSP との 接続を行った。接続状況をを図 6.6 に示す。BOB 上で BASE\_CLK, SMP\_CLK, CMD\_ENA, CMD\_DAT を対応する端子をショートさせ、GND は BOB の 19 番 (TLM\_CLK shield の XBox 側) に落としている。





図 6.5: BOB, Detector-sim – XBox 間接続の様子

| LVDS 端子                           | 電圧値 (V) | High/Low (Active) | LVDS 端子       | 電圧値 (V) | High/Low (Active) |
|-----------------------------------|---------|-------------------|---------------|---------|-------------------|
| $TLM_CLK(+)$                      | 1.39    | High (High)       | $SMP_CLK(+)$  | 1.08    | Low (High)        |
| $\mathrm{TLM}_{-}\mathrm{CLK}(-)$ | 1.01    | Low <b>が</b> 正常   | $SMP_CLK(-)$  | 1.44    |                   |
| $SCI_ENA(+)$                      | 1.49    | High (Low)        | $CMD_DAT(+)$  | 1.11    | Low (High)        |
| $SCI_ENA(-)$                      | 1.01    |                   | $CMD_DAT(-)$  | 1.48    |                   |
| $SCI_DAT(+)$                      | 1.02    | Low (High)        | $CMD_ENA(+)$  | 1.49    | High (Low)        |
| $SCI_DAT(-)$                      | 1.40    |                   | $CMD_ENA(-)$  | 1.12    |                   |
| $HK_ENA(+)$                       | 1.42    | High (Low)        | $BASE_CLK(+)$ | 1.07    | Low (High)        |
| $HK_ENA(-)$                       | 1.01    |                   | $BASE_CLK(-)$ | 1.44    |                   |
| $HK_DAT(+)$                       | 1.01    | Low (High)        |               |         |                   |
| $HK_DAT(-)$                       | 1.40    |                   |               |         |                   |

表 6.2: 各信号線の電圧値



図 6.6: 各機器の接続

## 6.4 XBox – PSP 間インターフェース試験

オシロスコープのプローバーを BOB の各端子に繋ぎ、各 LVDS 信号の波形の確認を行った。引き続き BOB の 19 番で GND を取っている (図 6.7)。XBox – PSP 間の信号はノイズ対 策のため LVDS を使用しており、差動インタフェースで通信を 行っている。そのため、各信号線の +- の差分を確認する必要 がある。以下に挙げるオシロスコープのキャプチャー画像のマ ゼンダ線は、プローバーの ch 1 と ch 2 の値の差分を表してい る。各信号線 (±) を 2 組ずつオシロスコープで波形を表示し、 2 信号間の ON/OFF のタイミング、また Delay が正常値であ るかを確認した (図 4.6 参照)。



図 6.7: prober の接続

#### 6.4.1 BASE\_CLK & TLM\_CLK

BASE\_CLK は PSP から XBox へと出力される周波数 5 MHz のクロック信号である。TLM\_CLK とは、 BASE\_CLK に同期して XBox から PSP へと出力されるクロック信号である。図 6.8 では、BASE\_CLK が Low になってから TLM\_CLK が Low に入るのに 16 ns の Delay が生じている。XDS での試験 (小節 5.2.3) ではこの Delay は 14 ns であったが、誤差の範囲と言える。

#### 6.4.2 SMP\_CLK & SCI\_ENA

SMP\_CLK は、BASE\_CLK を元に周波数 12.5 kHz (もしくは 15.625 kHz) で PSP から XBox へと出 力されている Sampling rate を規定するためのクロック信号である。図 6.9 では、SMP\_CLK が Active High に入ってから SCLENA が Active Low になるまで 20 $\mu$ s であることが分かる。つまり、sciEnaDelayLower と sciEnaDelayUpper で決まる Time window の範囲を 20  $\mu$ s が収まるように設定すればよ い。また、SCLENA は SCLDAT の有効範囲を示しており、Active Low の継続時間は 62.4 $\mu$ s と SCLDAT の長さと正常に一致している (62.4  $\mu$ s = 312 bit (SCLDAT のサイズ) × 0.2  $\mu$ s (転送速度:5 MHz))。



図 6.8: BASE\_CLK と TLM\_CLK の信号波形。 マゼンダ線は TLM\_CLK(+)(-) の差分を表す。

|                            | 信号名                | i               | Cha         | nne             | l (      | 緆       | (色)              | A                                        | ctive           |
|----------------------------|--------------------|-----------------|-------------|-----------------|----------|---------|------------------|------------------------------------------|-----------------|
| SCI_EI                     | NA(+)              | )               |             | ch1(            | 黄        | i)      |                  |                                          | Low             |
|                            | (-)                |                 |             | ch2(            | 緑        | ŧ)      |                  |                                          |                 |
| SMP_C                      | LK(+)              | )               |             | ch3(            | 行        | )       |                  | ]                                        | High            |
|                            | (-)                |                 |             | ch4(            | 赤        | ;)      |                  |                                          |                 |
| Agilent Tec                | hnologies          |                 |             |                 |          |         | FRI JU           | L 30 22:38                               | 3:38 2010       |
| <b>1</b> 1.00V/ <b>2</b> 1 | .00V/ 🕄 1.00\      | // 🖪 1          | .00V/       | ¢- 60.001       | 20       | .00%    | / Stop           | t 1                                      | 1.23V           |
|                            |                    |                 |             |                 |          |         |                  |                                          |                 |
|                            |                    |                 |             |                 |          |         |                  |                                          |                 |
|                            |                    |                 |             |                 |          |         |                  |                                          |                 |
| т                          |                    |                 |             | -               |          |         |                  |                                          |                 |
|                            | andungi.           |                 |             | all abstract in |          |         |                  |                                          | nisi Kensi-teli |
| 22                         |                    |                 |             |                 |          |         |                  |                                          | · · · · · · · · |
| -                          | an frances i sugar | an and a second | n decenary. |                 | rihana-a | romanda | er hopomerouger  | a ang ang ang ang ang ang ang ang ang an |                 |
|                            |                    |                 |             |                 |          |         |                  |                                          | -               |
|                            |                    |                 |             |                 |          |         |                  |                                          |                 |
|                            |                    |                 |             |                 |          |         |                  |                                          |                 |
| ŝţ                         |                    |                 |             |                 |          |         |                  |                                          |                 |
|                            |                    | 1. (1) (        | 50.0001     |                 |          | ED.Y    |                  |                                          |                 |
| ∆x = 20.000000             | A Source           | 17ΔX =          | 50.000k     | TZ X1           |          |         | NI) = 0.0V<br>X2 |                                          | 1.1/2           |
| Manual                     | Math               | ~               |             | -20.4000        | Jus      |         | 100.000ns        | X                                        | T X2            |

図 6.9: SMP\_CLK と SCI\_ENA の信号波形。 マゼンダ線は SCI\_ENA(+)(-) の差分を表す。

#### 6.4.3 CMD\_ENA & HK\_ENA

次に、PSP 側から Send\_HKall コマンドを送信 して XBox から HK データを取得することで、送信 したコマンドデータの波形と帰ってきた HK デー タの波形を確認した。CMD\_ENA、HK\_ENA は、 それぞれ CMD\_DAT, HK\_DAT の有効範囲を示す ものである。図 6.10 より、CMD\_ENA が Active Low に入ってから 42 ms 後に HK\_ENA のレスポ ンスが来ている。Comand Response Time は最大 で 43 ms なので正常である。また、図 6.11 では CMD\_ENA の Active Low 継続時間が CMD\_DAT の長さ 12.8µs と正常に一致している (12.8µs = 8 Byte(CMD\_DAT のサイズ)×8 bit×0.2µs (転送速 度:5 MHz))。同様に、図 6.4.3HK\_ENA の Active Low 継続時間が HK\_DAT の長さが 314µs と正常 に一致していることが確認できる ( $314\mu s = 196$ Byte(HK のレスポンスサイズ)×8 bit× $0.2\mu$ s (転送 速度:5 MHz))。



図 6.11: CMD\_ENA の拡大画像。



図 6.13: HK\_ENA と HK\_DAT の拡大図。 マゼンダ線は HK\_ENA(+)(-) の差分を表す。



図 6.10: CMD\_ENA と HK\_ENA の信号波形。 マゼンダ線は HK\_ENA(+)(-) の差分を表す。



図 6.12: HK\_ENA の拡大画像。



図 6.14: SCLENA と SCLDAT の拡大図。 マゼンダ線は SCLENA(+)(-) の差分を表す。

## 6.5 Science データ取得試験

XBox - PSP 間の9つの信号が正常に通信できていることが確認できたため、次に Science Dataの確認を行う。Detector-simulatorからダミーパルスを周期的に送出し、XBox を介して PSP で正常に取得できているかを検証した。

#### 6.5.1 Signals from the Detector-sim

本実験では実際の検出器ではなく、代わりに Detector-sim から出力されたダミーパルスの処理を行う。 Detector-sim から送出された下に凸のダミーパルスは、XBox-BBM 内で信号の増幅と反転の処理が行われる (図 6.4)。今回 NASA/GSFC 側が用意した XBox-BBM では、開発の関係上、反転処理は チャンネル 0 のみに加えられている。その他のチャンネルに関しては、下に凸のまま波高値が負の値に Clip している状態で実験を行った。なお、Detector-sim から発せられるパルスは全チャンネル共に同じ時刻で送出されている。XBox の ADC のダイナミックレンジは 14 bit で $-3V \sim 3V$  まで表示可能である。パルスのピークとアンダーシュートが同じスケールで上限値 / 下限値内に収まるように、-1.5 V (-4096 adu: ADC サンプル値) のオフセットがかかっている。今回は初めに、周期が 1 Hz, パルスのピーク電 圧が 1 V (+2730 adu), つまり電位差 2.5 V 程度の波高値を持ったダミーパルスを出力して波形データの取得を行った。



図 6.15: ダミーパルスの例

#### 6.5.2 Enable channels

まず、Detector-sim から送出されるチャンネル 0 の波形データを PSP で取得するために, Enable Amplifier コマンドを XBox に送信し、チャンネル 0 が enable に変更されているかを HK Digital Status を RMAPread することで確認する。PSP から送信したコマンド、XBox から帰ってきた HK Digital Status の値を表 6.3 にまとめる。

| コマンド名            |     | コマンド packet words              | HK Digital Status 16-17 word |              |
|------------------|-----|--------------------------------|------------------------------|--------------|
|                  |     | (16-bit hex)                   | (include CAL_AMP_ENA )       |              |
| EnableAmplifiers | MSB | x0288, [P_1], [P_2], [CRC_CMD] | LSB                          | x0000, x0100 |

表 6.3: 送信コマンドと calorimeter amplifiers enable の値

1 word = 16 bit

[P\_1] = x0000: LSB から数えて Bit 0 ~ Bit 8 が ch9 ~ ch17 の enable(1)/disable(0) に対応
 [P\_2] = x0001: LSB から数えて Bit 0 ~ Bit 8 が ch0 ~ ch8 の enable(1)/disable(0) に対応

[P\_2] の ch0 に対応する部分を enable にしたコマンドを送信後, SendHKall コマンドを送ることで返って きた HK Digital Status の CAL\_AMP\_ENA(calorimeter amplifiers enable state) の値を読んだ。HK status data のコマンドレスポンスサイズは全部で 98 words (196 Bytes), その内 20 words が HK Digital Status を表記している。CAL\_AMP\_ENA は 16 word 目から 17 word 目にかけて設けられている (表 6.4)。CAL\_AMP\_ENA の値から、channel 0 が enable に切り替わっていることが確認できた。

| Word  | Field Bit | Field Name     | Field Description                                                           |
|-------|-----------|----------------|-----------------------------------------------------------------------------|
| 16    | 63        | JFET_VDD2_EN   | JFET_VDD2 $\sigma$ enable 状態 (enable:1, disable:0)                          |
| 16    | 62        | JFET_VDD1_EN   | JFET_VDD1 $\sigma$ enable 状態 (enable:1, disable:0)                          |
| 16    | 61:59     | TEMP_CTRL_MODE | temperature controller $\Xi - F$                                            |
| 16    | 58        | ANTICO_AMP_EN  | anti-coincident amplifier $\sigma$ enable $\sigma$ 状態 (enable:1, disable:0) |
| 16-17 | 57:40     | CAL_AMP_EN     | カロリメータ amplifier の enable 状態 (enable:1, disable:0)                          |
| 17    | 39:32     | CAL_BIAS_REG   | カロリメータバイアスの設定電圧値 (Bit 数)                                                    |

表 6.4: HK Digital Status の 16 - 17 word の bit 対応

(詳細は「Astro-H SXS Xbox Command and Command Response List」参照)

#### 6.5.3 WFRB 内の Signal 波形の検証

チャンネル 0 が enable に切り替わったところで、Detectorsim からカウントレート 1 Hz のダミーパルスを連続的に送信 する。XBox 内で反転・増幅された後の ADC 手前で、オシロ スコープのプローバーで直接アナログ波形を確認する。また、 MIO ボードに搭載されている SDRAM 内に設けられた Wave-Form Ring Buffers (WFRB)の中身を確認し、XBox が送信し ている波形と同等の波形データが PSP 内に保存されているか を検証した。

まず、Detector-sim からダミーパルスを流さない状態で PSP に Science データを取得し、データの中身を確認する。図 6.17 が WFRB の channel 0 に保存されてたデータを dump した adcsample のプロットであり、横軸が時間 (sample 番目)、縦軸が adcsample(adu) である。波形が  $-4500 \sim 2500$  adu の peak-topeak を持っており、電圧値に換算するとおよそ  $\sim 0.7$  V のノ イズが乗っていることが分かる。また、周期がおよそ 60 Hz で あり、これは使用している実験室の商用電源と同等である。



図 6.16: XBox へのプローバーの接続



図 6.17: pxWFRB[0] の dump(パルス無し)



次に、ダミーパルスを送信し、channel 0 の WFRB 内の波形データを確認した (図 6.5.3)。ある周期 でノイズが含まれており、オシロスコープで見られる波形も正常でないことが確認された (図 6.21)。そ こで、オシロスコープの prober を channel 1 に付け替えて波形を確認したところ、こちらはきれいな形 状のパルスが見られた (図 6.22)。







図 6.21: ch 0 の波形 (反転無し)



図 6.20: ノイズの拡大図



図 6.22: ch 1 の波形

チャンネル 0 以外の他チャンネルの波形も確認するため、全チャンネルの EnableAmplifiers を ON にして再度 Science データの取得を行った。図 6.23 に ch 0, ch 1 の波形プロットを示す。ch 0 ではノ イズの出力がパルスに対して大きい。ch 1 に関しては、比較的きれいな波形が見られるが、想定してい ないパイルアップイベントが混在していた。又、ch 0 以外は前述の通りパルスに反転処理を加えていな いため、負の値で Clip している。



図 6.23: pxWFRB[0], [1] のデータプロット

その後、XBox 側の端子 |J204|, |J205|をショートさせ、anti-co amplifier を ON にした状態で ch 0 の 波形を確認したが、ノイズの改善は見られなかった。その他のチャンネルも含めた XBox-BBM の問題 点を以下にまとめる。

- px[0] と px[2] はかなり noisy
- px[1] ~ px[17]のV<sub>in</sub>は反転無し
- Anti-coの信号はADCの手前まではnoisy
  - VD(Volts, digital) は反転処理有り
  - VD = 2.4 V (XBox 側)VD > 3.0 V (PSP 側) enable/disable 共に

#### 6.5.4 Detector-sim – XBox-BBM 間の接続変更

Detector-sim 側の端子 J402 から pixel 9 チャンネル分ず つ 2 つに分岐して出力しているケーブル P204, P205 の接 続先を入れ替えて再試験を行った。各コネクタの接続先は以下 の通りである (表 6.5)。前述同様、接続変更後に ch 0, ch 1 の 波形をオシロスコープ、WFRB の中身それぞれを確認した (図 6.24, 6.25)。ch 0 の波形が接続変更前に比べてきれいな形状に なっている。これにより、Detector-sim と XBox-BBM とを繋 ぐケーブルがノイズに影響していることが分かった。

| Detector-sim | (Cable ID) | XBox                    |
|--------------|------------|-------------------------|
| J402         | (P204)     | $J205 \rightarrow J204$ |
|              | (P205)     | $J204 \rightarrow J205$ |

表 6.5: 接続変更先



図 6.24: ch 0 (上), ch 1 (下)の波形 の同時表示



図 6.25: WFRB[0] の波形 (上), WFRB[1] の波形 (下)

#### 6.5.5 全 pixel の Science Data チェック

Detector-sim, XBox, PSP を全て接続し、オシロスコープで 波形が送信されていることを確認した後に、Sampling rate を 12.5 kHz (baseCntRoundup = 400), 13.9 kHz (baseCntRoundup = 360), 15.625 kHz (baseCntRoundup = 320) にして、それぞれ全てのチャンネルで正しく 20 秒分のデータ が取得できるか確認した。Detector-sim — XBox 間を繋ぐケー ブルの片側 P204] に問題があったため、P205] のみを接続し て行った。そのためパルス信号が入力されるのは ch 0 ~ ch 8 の 9 チャンネルだけとなる。接続は以下の通りである (表 6.6)。

| Detector-sim | (Cable ID) | XBox        |
|--------------|------------|-------------|
| J402         | (P205)     | J204        |
|              |            | J205 (ショート) |

表 6.6: ケーブルの接続



図 6.26: ch 0 の波形 (黄), ch 1 の波 形 (緑)

それぞれの Sampling rate でデータを取得した際の結果を表 6.7 にまとめる。Sampling rate が 12.5 kHz の場合、channel 0 では正常にパルスが取得出来ていることが確認できた。ch 5 に関して、データが 取得出来なかったのは Detector-sim を操作している PC 側の問題であることが判明した。又、Sampling rate を 12.5 kHz よりも早めると XBox 内の Buffer が間に合わず、後半のチャンネルのデータが次のデー タで上書きされてしまい、データが破損するということが生じた。13.9 kHz で Science データの取得を 行った場合、ch 17 が上書きされて破損データとなっており、15.625 kHz では全チャンネルデータが初 期値のままであった。12.5 kHz と 13.9 kHz で取得した波形データを付録 B に示す。

| 表 | 6.7: | 各 | Pixel | の取得デ | ータの | 結果 |
|---|------|---|-------|------|-----|----|
|---|------|---|-------|------|-----|----|

| Channel                                | Sampling rate : $12.5 \text{ kHz}$ (baseCntRoundup = $400$ ) |
|----------------------------------------|--------------------------------------------------------------|
| ch 0                                   | 正常                                                           |
| ch 1                                   | 誤った周波数                                                       |
| $ch 2 \sim ch 4$                       | 正常 $(V_{in}$ なし, 負に $Clip)$                                  |
| ch 5                                   | データなし                                                        |
| $\mathrm{ch}\; 6 \sim \mathrm{ch}\; 7$ | 正常 (V <sub>in</sub> なし, 負に Clip)                             |
| $\mathrm{ch}\;8\sim\mathrm{ch}\;17$    | データなし                                                        |

| Channel               | Sampling rate : $13.9 \text{ kHz}$ (baseCntRoundup = $360$ ) |
|-----------------------|--------------------------------------------------------------|
| $ch \ 0 \sim ch \ 16$ | 上記 12.5 kHz 時と同様                                             |
| ch 17                 | 破損データ                                                        |

| Channel            | Sampling rate :15.625 kHz (baseCntRoundup = $320$ ) |
|--------------------|-----------------------------------------------------|
| ch $0\sim$ ch $17$ | データなし                                               |

上記の接続では正しいデータを取得できなかったため、接続を XBox sim – BOB – PSP BBM と変更 した。データが取得できない原因を追求するため、UserFPGA の version の変更や、sciEnaDelay の値 を変更することで time window を変化させて実験を繰り返した。結果を、表 6.8 にまとめる。

| baseCnt- | Rate (kHz) | sciEna | aDelay | UerFP | GA ver. | Rec (s) | Result                      |
|----------|------------|--------|--------|-------|---------|---------|-----------------------------|
| Roundup  |            | Lower  | Upper  | XBox  | MIO     |         |                             |
| 320      | 15.625     | 75     | 150    | 5     | 8       | 20      | no data                     |
| 400      | 12.5       | 75     | 150    | 5     | 7       | 20      | correct data                |
| 320      | 15.625     | 75     | 150    | 5     | 7       | 20      | no data                     |
| 320      | 15.625     | 0      | 312    | 5     | 7       | 20      | wrong data                  |
| 320      | 15.625     | 0      | 312    | 5     | 8       | 20      | wrong data                  |
| 320      | 15.625     | 75     | 200    | 5     | 8       | 20      | no data                     |
| 320      | 15.625     | 0      | 125    | 5     | 8       | 20      | wrong data                  |
| 400      | 12.5       | 0      | 125    | 5     | 8       | 20      | correct data                |
| 320      | 15.625     | 20     | 125    | 5     | 8       | 20      | no data                     |
| 320      | 15.625     | 1      | 125    | 5     | 8       | 20      | no data                     |
| 320      | 15.625     | 150    | 200    | 3     | 8       | 20      | no data                     |
| 400      | 12.5       | 150    | 200    | 3     | 8       | 20      | correct data                |
| 380      | 13.158     | 150    | 200    | 3     | 8       | 20      | wrong data                  |
| 380      | 13.158     | 75     | 125    | 5     | 8       | 10      | correct data (except ac)    |
| 400      | 12.5       | 75     | 125    | 5     | 8       | 10      | correct data                |
| 320      | 15.625     | 75     | 125    | 5     | 8       | 10      | no data                     |
| 340      | 14.705     | 75     | 125    | 5     | 8       | 10      | no data                     |
| 320      | 15.625     | 0      | 125    | 5     | 8       | 10      | correct data (half-way)     |
| 360      | 13.9       | 75     | 125    | 5     | 8       | 10      | correct data (only 0-16 ch) |

表 6.8: サンプリングレート、FPGA のバージョンを変更し WFRB の中身を確認した結果。

これらの結果より、以下の様な事項が確認できた。

- 20 s分のデータを取得するとWFRBが1周してしまうので、wrong data が入っているようにみ えてしまう。
- SMP\_CLK が 12.5 kHz (sciENADelay=400) よりも速くなると、XBox のバッファが書き潰されてしまい、後ろのチャンネルのデータがおかしくなってしまう。
- 破損データなどにより、parity error が3つ以上のチャンネルでつくと、MIO が誤作動をおこし、 正しいデータが取得できなくなる。

本実験の時点で XBox-BBM は、12.5 kHz よりも早い Sampling rate でのデータ取得は対応できていないと言うことが判明した。現在 NASA/GSFC にこの点の改善を要請している段階である。

#### 6.5.6 波高値の比較 (ch 0)

PSP-BBM で Sampling rate = 12.5 kHz で取得した ch 0 の波形データの波高値と、オシロスコープ で測定した波高値を比較し、正常に波形が再現されているか検証した。

図 6.26 の ch 0 より、オシロスコープのカーソルを利用して測ったパルスの波高値はおよそ 1.89 V で あった。XBox-BBM の ADC は縦軸 (電圧値) は  $-3V \sim +3V$  を 14 bit で表しており、1 bit を 1 adu (adcsample unit) とすると  $-8192 \sim +8192$  adu を取り得る。ADC の縦軸の分解能より、オシロスコー プで測った波高値の adu 換算での見積もりは、

$$1.89 (V) \times \frac{8192 (adu)}{3 (V)} = 5160 (adu) \cdots (推測値)$$
(6.1)

図 B の pxWFRB[0] のプロットより、保存されていたパルスのピーク値は 1130 adu であった。この 時のベースラインは -4050 adu だったため、波高値は

これより、送信された波形とWFRBに格納された波形データの波高値は大よそで一致していたため、 PSPで正常にデータ取得できたと言える。

#### 6.5.7 波高値の比較 (ch0 : Short pulse height)

Detector-simから送信するパルスの波高値を前節のパルスよりも低いものに変更し、同様にPSPで取得出来るかを検証した。取得時の条件は以下のとおりである。

| Sampling rate | $12.5 \mathrm{~kHz}$ |
|---------------|----------------------|
| Debug mode    | ON                   |
| 波高値           | $\sim 1.05~{\rm V}$  |

表 6.9: 波形データ取得時の条件



図 6.27: ch 0 の波形 (黄), ch 1 の波形 (緑)

前節同様、オシロスコープの波高値と ADC の adcsample の値とを比較すると、

$$1.05 (V) \times \frac{8192 (adu)}{3 (V)} = 2867 (adu) \cdots (推測値)$$
(6.3)

$$-1150 ( ピーク値) + 4020 ( ベースライン) = 2870 (adu) \cdots (実測値)$$
(6.4)

こちらも波高値は大よそ一致していると言える。

## 6.6 XBox – PSP 間コマンド/レスポンス試験

#### 6.6.1 HK Status データのチェック

「Astro-H SXS Xbox Command and Command Response List」に記載されている全ての XBox コマ ンドを PSP から送信して XBox へ要求を出し、SendHKAll コマンドで HK Status データの値を RMAP Read する事で、XBox が要求値を返しているかを確認した。SendHKAll コマンドは XBox に全ての HKStatus データを要求するコマンドであり、レスポンスサイズは全部で 98 words (196 Byte) で表 6.10 のようなグループに分かれている。今回は XBox コマンドで要求した値が、HK Status データの該当箇 所で変更されているかを1つずつ確認する作業を行った。詳細な結果を表 6.12, 6.13 に示す。Receive カ ウント、Sent カウントが正常にカウントされていることが確認できた。またレスポンスサイズも問題な く、エラーはカウントされず正常であった。

表 6.10: 全 HK パケットデータ (98 words)

0xC400, 0x0040, 0x0F34, 0x0FC8, 0x6576,
[16 HK Analog Group0 status data words],
[20 HK Analog Group1 status data words],
[20 HK Analog Group2 status data words],
[16 HK Analog Group3 status data words],
[20 HK Digital Group status data words],
[CRC\_RESP]

6.6.2 バイアス電圧の HK Analog Statas 確認

上記で確認した HK データの内、供給電圧に関するコマンドの確認試験を行った。カロリメータや anti-co にかけるバイアス値、JFET に与えるバイアス値: Vdd, Vss を変更するために、PSP から XBox のレジスタヘコマンドを送信し、送ったコマンドの設定電圧値と HK に入っている電圧値を比較すると いう形で行った。XBox では、図 6.28 のように検出器から読み取った信号電圧を -3 V  $\sim 3$  V に収まる よう変圧してからデジタル値として HK データに載せている。



図 6.28: XBox 内回路の概略図

そのため、HK に書かれている ADC code と電圧値の関係は、以下の式のようになる。

$$(\mathbf{\overline{a}E}\mathbf{\underline{m}}) = \frac{(\text{ADC code})}{4} \times \frac{6}{2^{14}} \times 3 \tag{6.5}$$

ADC code のデータ値は 16 bit 中 14 bit であり、PSP 側での HK データでは 16 bit 表記であるため 4 で 割ることで 2 bit シフトさせている。なお、各コンポーネントに流すことのできる最大バイアス値はそ れぞれ異なっており、XBox コマンド値: 0xFF で指定する最大電圧値は共通ではないことに注意する。 また、XBox の各レジスタに対応したピンの電圧値が初期状態で0Vになっていることを確認するため、 レジスタの変更前にテスターによる確認を行っている(図 6.29)。



図 6.29: Detecter-sim 側の様子

実際にコマンドを送信して得られた HK データの結果を表 6.11 にまとめた。PSP から指定した電圧 値と HK データで返された値から計算した電圧値がほぼ一致していることが確かめられた。この時、テ スターで直接測った電圧値も同値程度に変更されていることを確認している。SetAnticoBias において AnticoBiasout が2段書いてあるのは、時定数 6.2秒の RC 回路が入っているため、電圧が0ボルトに戻 るまでにタイムラグがあったためである。

| コマンド名              | 値                | HK Analog Status    | 電圧換算                |                      |                   |
|--------------------|------------------|---------------------|---------------------|----------------------|-------------------|
| SetCalorimeterBias | -                | CALBIAS1=0x0004     | 0 V                 | CALBIAS2=0x0004      | 0 V               |
| $5\mathrm{V}$      | $0 \mathrm{xFF}$ | CALBIAS1=0x46C0     | $4.97~\mathrm{V}$   | CALBIAS2=0x46C8      | $4.98~\mathrm{V}$ |
| $2.5 \mathrm{~V}$  | $0 \mathrm{x7F}$ | CALBIAS1=0x2348     | $2.48~\mathrm{V}$   | CALBIAS2=0x2334      | $2.48~\mathrm{V}$ |
| 0 V                | 0x00             | CALBIAS1=0x000C     | $0.00 \mathrm{V}$   | CALBIAS2=0x0008      | $0.00 \mathrm{V}$ |
| SetColdJFETVdd     | -                | ColdJFETVdd1=0x000C | 0.00 V              | ColdJFETVdd2=0x0010  | 0.00 V            |
| $5\mathrm{V}$      | $0 \mathrm{xFF}$ | ColdJFETVdd1=0x46B8 | $4.99~\mathrm{V}$   | ColdJFETVdd2=0x46BC  | $4.99~\mathrm{V}$ |
| $2.5 \mathrm{~V}$  | $0 \mathrm{x7F}$ | ColdJFETVdd1=0x2324 | $2.49~\mathrm{V}$   | ColdJFETVdd2=0x2334  | $2.49~\mathrm{V}$ |
| 0 V                | 0x00             | ColdJFETVdd1=0x000C | 0.00 V              | ColdJFETVdd2=0x0008  | $0.00 \mathrm{V}$ |
| SetColdJFETVss     | -                | ColdJFETVss=0x0010  | 0.00 V              | -                    | -                 |
| -8.756 V           | $0 \mathrm{xFF}$ | ColdJFETVss=0x8000  |                     | -                    | -                 |
| -4.378 V           | $0 \mathrm{x7F}$ | ColdJFETVss=0xC258  | $-4.34 \mathrm{~V}$ | -                    | -                 |
| 0 V                | 0x00             | ColdJFETVss=0x000C  |                     | -                    | -                 |
| SetAnticoBias      | -                | AnticoBiasin=0x0008 | 0.00 V              | AnticoBiasout=0x0024 | 0.00 V            |
| $8.5 \mathrm{V}$   | $0 \mathrm{xFF}$ | AnticoBiasin=0x7854 | $8.46~\mathrm{V}$   | AnticoBiasout=0x605C | $8.00 \mathrm{V}$ |
| $4.25 \mathrm{~V}$ | $0 \mathrm{x7F}$ | AnticoBiasin=0x3C10 | $4.22 \mathrm{~V}$  | AnticoBiasout=0x4944 | $3.98~\mathrm{V}$ |
| 0 V                | 0x00             | AnticoBiasin=0x000C | $0.00 \mathrm{V}$   | AnticoBiasout=0x0A80 | $0.01~\mathrm{V}$ |
| 数分後 $ ightarrow$   |                  |                     |                     | AnticoBiasout=0x0018 | $0.00 \mathrm{V}$ |

表 6.11: HK Analog Status の確認

以上のようにして、すべてのステータスが正常に機能していることを確認できた。

| Command name               | Command Code         | MIOLen | MIOErr | ErrCnt | RcvCnt | SentCnt | XboxLen | XboxErr | RespTime             | Comment                                                             |
|----------------------------|----------------------|--------|--------|--------|--------|---------|---------|---------|----------------------|---------------------------------------------------------------------|
| ResetAll                   | 0240 0F34 0FC8       | 12     | 0      | 0      | 1      | 1       | 12      | 0       |                      | 0word                                                               |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 2      | 2       | 196     | 0       |                      | POR=1, ALL_RST=1, 92wird                                            |
| ResetFPGARegisters         | 0244 0F34 0FC8       | 12     | 0      | 0      | 3      | 3       | 12      | 0       |                      | 0word                                                               |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 4      | 4       | 196     | 0       |                      | REG_RST=1, POR=0, ALL_RST=0, 92word                                 |
| ResetDACRegisters          | 0248 0F34 0FC8       | 12     | 0      | 0      | 5      | ũ       | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 9      | 9       | 196     | 0       |                      | DACRst=1, REG_RST=0                                                 |
| EnableCalorimeterBias2     | 0258 0F34 0FC8       | 12     | 0      | 0      | 7      | 7       | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | ~      | 8       | 196     | 0       |                      | CAL_BIAS2_EN=1, 92word                                              |
| DisableCalorimeterBias2    | 0254 0F34 0FC8       | 12     | 0      | 0      | 6      | 6       | 12      | 0       | 0.0144  ms           | 0word, scope-68.png                                                 |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 10     | 10      | 196     | 0       |                      | CAL_BIAS2_EN=0, 92word                                              |
| SetTempControlMode0 00ff   | 02E0 0F34 0FC8       | 12     | 0      | 0      | 11     | 11      | 12      | 0       | 0.0144  ms           | 0word, scope_69.png                                                 |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 12     | 12      | 196     | 0       |                      | TEMP_CTRL_SETPT=FF, TEMP_CTRL_MODE=0                                |
| SetTempControlMode1 0001   | 0F34 0FC8            | 12     | 0      | 0      | 13     | 13      | 12      | 0       | 0.0144  ms           | 0word, scope_70.png                                                 |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 14     | 14      | 196     | 0       |                      | TEMP_CTRL_SETPT=01, TEMP_CTRL_MODE=1                                |
| SetTempControlMode2 0002   | 0F34 0FC8            | 12     | 0      | 0      | 15     | 15      | 12      | 0       | 0.0144  ms           | 0word, scope_71.png                                                 |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 16     | 16      | 196     | 0       |                      | TEMP_CTRL_SETPT=02, TEMP_CTRL_MODE=2                                |
| SetTempControlMode3 0003   | 0F34 0FC8            | 12     | 0      | 0      | 17     | 17      | 12      | 0       | 0.0144  ms           | scop.72.png                                                         |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 18     | 18      | 196     | 0       |                      | TEMP_CTRL_SETPT=03, TEMP_CTRL_MODE=3                                |
| SetTempControlMode4 0004   | 0F34 0FC8            | 12     | 0      | 0      | 19     | 19      | 12      | 0       | 0.0144  ms           | scope_73.png                                                        |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 20     | 20      | 196     | 0       |                      | TEMP_CTRL_SETPT=04, TEMP_CTRL_MODE=4                                |
| SetTempControlMode5 0005   | 0F34 0FC8            | 12     | 0      | 0      | 21     | 21      | 12      | 0       | 0.0144  ms           | scope_74.png                                                        |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 22     | 22      | 196     | 0       |                      | TEMP_CTRL_SETPT=05, TEMP_CTRL_MODE=5                                |
| SetTempControlMode6 0006   | 0F34 0FC8            | 12     | 0      | 0      | 23     | 23      | 12      | 0       | $0.0144~\mathrm{ms}$ | Scope_75.png                                                        |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 24     | 24      | 196     | 0       |                      | TEMP_CTRL_SETPT=06, TEMP_CTRL_MODE=6                                |
| SetTempControlMode7 00ff   | 0F34 0FC8            | 12     | 0      | 0      | 25     | 25      | 12      | 0       | $0.0144~\mathrm{ms}$ | Scope_76.png                                                        |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 26     | 26      | 196     | 0       |                      | TEMP_CTRL_SETPT=FF, TEMP_CTRL_MODE=7                                |
| SetTempControlMode0 0000   | 0F34 0FC8            | 12     | 0      | 0      | 27     | 27      | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 28     | 28      | 196     | 0       |                      | TEMP_CTRL_SETPT=00, TEMP_CTRL_MODE=0                                |
| EnableCalorimeterBias1     | 0254 0F34 0FC8       | 12     | 0      | 0      | 29     | 29      | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 30     | 30      | 196     | 0       |                      | CAL_BIAS1_EN=1, 92word                                              |
| EnableCalorimeterBias2     | 0258 0F34 0FC8       | 12     | 0      | 0      | 31     | 31      | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 32     | 32      | 196     | 0       |                      | CAL_BIAS2_EN=1, 92word                                              |
| EnableColdJFETTVdd1        | 0264 0F34 0FC8       | 12     | 0      | 0      | 33     | 8       | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 34     | 34      | 196     | 0       |                      | JFET_VDD1_EN=1, 92word                                              |
| EnableColdJFETTVdd2        | 0268 0F34 0FC8       | 12     | 0      | 0      | 35     | 35      | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 36     | 36      | 196     | 0       |                      | JFET_VDD2_EN=1, 92word                                              |
| EnableAC                   | 0270 0F34 0FC8       | 12     | 0      | 0      | 37     | 37      | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 38     | 38      | 196     | 0       |                      | ANTICO_AMP_EN=1                                                     |
| EnableAmprifiers 01ff 01ff | $0288 \ 01FF \ 01FF$ | 12     | 0      | 0      | 39     | 39      | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 40     | 40      | 196     | 0       |                      | CAL_AMP_EN=1 (0-17ch), 92word                                       |
| SetCalorimeterBias 0000    | 02C0 0000 0FC8       | 12     | 0      | 0      | 41     | 41      | 12      | 0       |                      |                                                                     |
| SendHKAll                  | 0040 0F34 0FC8       | 196    | 0      | 0      | 42     | 42      | 196     | 0       |                      | CAL_BIAS_REG=FF, 92word, ClorimeterBias1=46CC, ClorimeterBias2=46C4 |

表 6.12: 送信した XBox コマンドと digital status の値

| の値               |
|------------------|
| status           |
| digital          |
| J                |
| <u>۳</u>         |
| ン                |
| $\triangleright$ |
| Π                |
| XBox             |
| た                |
| د                |
| 送信               |
| 6.13:            |
| 表                |

| Command name               | Command Code   | MIOLen | MIOErr | ErrCnt | RcvCnt | SentCnt | XboxLen | XboxErr | RespTime   | Comment                                                         |
|----------------------------|----------------|--------|--------|--------|--------|---------|---------|---------|------------|-----------------------------------------------------------------|
| EnableCalorimeterBias1     | 0254 0F34 0FC8 | 12     | 0      | 0      | 1      | 1       | 12      | 0       | 0.0144  ms | scope_77.png                                                    |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 2      | 2       | 196     | 0       |            |                                                                 |
| EnableCalorimeterBias2     | 0258 0F34 0FC8 | 12     | 0      | 0      | 3      | 3       | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 4      | 4       | 196     | 0       |            |                                                                 |
| EnableColdJFETTVdd1        | 0264 0F34 0FC8 | 12     | 0      | 0      | 5      | 5       | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 9      | 9       | 196     | 0       |            |                                                                 |
| EnableColdJFETTVdd2        | 0268 0F34 0FC8 | 12     | 0      | 0      | 7      | 7       | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | ×      | ×       | 196     | 0       |            |                                                                 |
| EnableAC                   | 0270 0F34 0FC8 | 12     | 0      | 0      | 6      | 6       | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 10     | 10      | 196     | 0       |            |                                                                 |
| EnableAmprifiers 01ff 01ff | 0288 01FF 01FF | 12     | 0      | 0      | 11     | 11      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 12     | 12      | 196     | 0       |            | CAL.BIAS1=0x04, CAL_BIAS2=0x04                                  |
| SetCalorimeterBias 00ff    | 02C0 00FF 0FC8 | 12     | 0      | 0      | 13     | 13      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 14     | 14      | 196     | 0       |            | CAL.BIAS1=0x46C0, CAL_BIAS2=0x46C8, CAL_BIAS_LEN=0xFF           |
| SetCalorimeterBias 007f    | 02C0 007F 0FC8 | 12     | 0      | 0      | 15     | 15      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 16     | 16      | 196     | 0       |            | CAL.BIAS1=0x2348, CAL.BIAS2=0x2334, CAL.BIAS.LEN=0x7F           |
| SetCalorimeterBias 0000    | 02C0 0000 0FC8 | 12     | 0      | 0      | 17     | 17      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 18     | 18      | 196     | 0       |            | CAL_BIAS1=0x000C, CAL_BIAS2=0x0008, CAL_BIAS_LEN=0x00,          |
|                            |                |        |        |        |        |         |         |         |            | CAL_JFET_VDD1=0x000C, CAL_JFET_VDD2=0x0010                      |
| SetColdJFETTVdd 00ff       | 02C4 00FF 0FC8 | 12     | 0      | 0      | 19     | 19      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 20     | 20      | 196     | 0       |            | COLD_JFET_VDD1=0x46B8, COLD_JFET_VDD2=0x46BC, JFET_VDD_REG=0xFF |
| SetColdJFETTVdd 007f       | 02C4 007F 0FC8 | 12     | 0      | 0      | 21     | 21      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 22     | 22      | 196     | 0       |            | COLD_JFET_VDD1=0x2324, COLD_JFET_VDD2=0x2334, JFET_VDD_REG=0x7F |
| SetColdJFETTVdd 0000       | 02C4 0000 0FC8 | 12     | 0      | 0      | 23     | 23      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 24     | 24      | 196     | 0       |            | COLD_JFET_VDD1=0x000C, COLD_JFET_VDD2=0x0008, JFET_VDD_REG=0x00 |
| SetColdJFETTVss 00ff       | 02C8 00FF 0FC8 | 12     | 0      | 0      | 25     | 25      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 26     | 26      | 196     | 0       |            | JEFET_VSS_REG=0xFF                                              |
| SetColdJFETTVss 007f       | 02C8 007F 0FC8 | 12     | 0      | 0      | 27     | 27      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 28     | 28      | 196     | 0       |            | JEFET_VSS_REG=0x7F                                              |
| SetColdJFETTVss 007f       | 02C8 0000 0FC8 | 12     | 0      | 0      | 29     | 29      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 30     | 30      | 196     | 0       |            | JEFET_VSS_REG=0x00                                              |
| SetAnticoBias 00ff         | 02CC 00FF 0FC8 | 12     | 0      | 0      | 31     | 31      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 32     | 32      | 196     | 0       |            | ANTICO_BIAS_REG=0xFF                                            |
| SetAnticoBias 007f         | 02CC 007F 0FC8 | 12     | 0      | 0      | 33     | 33      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 34     | 34      | 196     | 0       |            | ANTICO_BIAS_REG=0x7F                                            |
| SetAnticoBias 0000         | 02CC 0000 0FC8 | 12     | 0      | 0      | 35     | 35      | 12      | 0       |            |                                                                 |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 36     | 36      | 196     | 0       |            | ANTICO_BIAS_REG=0x00                                            |
| SendHKAll                  | 0040 0F34 0FC8 | 196    | 0      | 0      | 37     | 37      | 196     | 0       |            |                                                                 |

# 第7章 PSPシミュレーションプログラムを用いた機 能評価

2010年1月現在、PSP は試験用モデル (BBM)を用いた検証結果から、FPGA 部の仕様を決定し、フラ イト品とほぼ同等なプロトタイプである PSP の性能実証モデル (EM)の製作を開始している。PSP-EM の性能評価として、PSP のデジタル波形処理のアルゴリズムが、実際のカロリメータ検出器の生波形 データに対して正常に機能を果たすかの検証を行うことになる。その際、デジタル波形処理を行った場 合に予想される出力と実際の出力結果との比較が必要となる。本章では、PSP の機能をソフトウェア上 で模擬したシミュレーションプログラムの環境を用意し、PSP の予想される出力に対して評価を行った。

## 7.1 PSP シミュレーションプログラム

PSP シミュレーションプログラムで行う処理は以下の通りである。

| sxspspsim | ANL/FTOOLS |
|-----------|------------|
|-----------|------------|

| /                      |                                                   |
|------------------------|---------------------------------------------------|
| – pspsimBinRead        | :波形データの Binary ファイル読み込み                           |
| - pspsimSciMain        | : delayBuffer <b>への格納、微分値計算、</b> WFRB <b>への保存</b> |
| – pspsimAcPulseNoise   | :antico パルス・ノイズの検出(トリガ)                           |
| – pspsimPxPulseNoise   | :ピクセルパルス・ノイズの検出 (トリガ)                             |
| – pspsimPxPuNoRecWrite | : FITS ファイルへの書き出し (節 7.4 で導入)                     |
| – pspsimPxPulseCalc    | :グレード付け · 波高値解析 (節 7.4 で導入)                       |

なお、時系列の関係上、節 7.3 と節 7.4 で扱う PSP シミュレーションプログラムは version が異なる ため注意する。

### 7.2 使用データ

PSP シミュレーションプログラム (以下 PSP-sim) で走らせる波形データは、NASA/GSFC で開発を 行っている SXS のカロリメータ検出器の試験用モデル (BBM) から実際に取得した生波形データを元に したものである。データ形式はすでに XBox での処理を終えたバイナリデータとなっており、データ自 体は章 5 で使用した XBox シミュレーター内に保存されているデータと同じ物である。この波形データ の詳細を表 7.1 に記す。このデータは符号無し 16 bit であるため、PSP-sim で扱うためには 2 bit シフ トさせて (4 で割って) 符号付き 14 bit 表記にする必要がある。また、XBox 内でのオフセット電圧を再 現するために 0x4000 を差し引かなければならない。このオフセット電圧はパルスのピークとアンダー シュートが ADC の上限値と下限値内に収まるよう設定されている。つまり、X を元データの ADC サ ンプル値 (16 bit) とすると、PSP-sim に出力すべき ADC サンプル値は

ADC サンプル値 (14bit) 
$$\equiv \frac{X - 0x8000 - 0x4000}{4}$$
  
 $\equiv \frac{X}{4} - 12288$  (7.1)

となり、上記のように変換後 PSP-sim の処理に使用した。しかし、このフォーマットでは上限値が 4095 で頭打ちとなってしまい、4096 ~ 8191 の値を取り得ない。そのため ADC サンプル値は 4095 で clip してしまうことに注意する。

| 表 | 7.1: | 波形デー | -タの詳細 |
|---|------|------|-------|
|---|------|------|-------|

| ファイル名  | R73_2009_10_16_01.bin                         |
|--------|-----------------------------------------------|
| 内容     | XBox での A/D 変換後の全 752,347,136 サンプルの ADC サンプル値 |
|        | 含んでいる特性 X 線:Al, K, Mn の K 線 (NASA/GSFC 調べ)    |
|        | カウントレート: 0.6 count/s (cross-talk 含まず)         |
|        | 30 Hz のハイパスフィルターで処理済み (AC カップリング)             |
| フォーマット | 1列のデータ行列                                      |
|        | 符号無し 16 bit データ                               |
|        | ベースライン = $0x7FFF(16$ 進)                       |
|        | Net order (Big Endian) <sup>1</sup>           |

<sup>1</sup>1バイトごとに分割された数値データを最上位のバイトから順番に記録/送信する方式。

## 7.3 Science Module 処理後の Science データ

#### 7.3.1 パラメータ設定値

準備した波形データに MIO ボードの Science Module を模擬した処理を行い、その出力データに対し て検証を行った。各種パラメータの設定値は表 7.2 の通りである。なお、Sampling rate は 12.5 kHz を 仮定している。

この波形データは、約 60 ks のデータで 148,030 パルスがトリガされており、cross talk などの非正 規イベントも含めた場合のカウントレートは、およそ 2.5 count/s であった。

#### 7.3.2 トリガ情報のプロット

シミュレーション処理後に出力された、pxPulseEDB に入る値のダンプファイルを用いて、以下の ように各種プロットの検証を行った。

loResPH のスペクトル

トリガされた全てのイベントパルスの loResPH のヒストグ ラムをプロットした (図 7.1)。使用データの情報から波形デー タの中には、Al, K, Mn の特性 X 線を含んでいることが分かっ ている。各輝線のエネルギー (表 7.3.2) と図 7.1 の輝線と見ら れる loResPH の値を比較すると、loResPH 値が 5380 (chan) 付近の輝線が Mn-Kα線であることが推測できる。これを基準

| 特性 X 線             | エネルギー (eV) |
|--------------------|------------|
| Al-K $\alpha$      | 1486.6     |
| Al-K $\beta$       | 1557.4     |
| $\text{K-K}\alpha$ | 3312.9     |
| $\text{K-K}\beta$  | 3589.6     |
| Mn-K $\alpha$      | 5894.2     |
| Mn-K $\beta$       | 6490.4     |

表 7.3: 特性 X 線のエネルギー

| Enspepeini (ereion 2000 | 12 00                                |                                               |
|-------------------------|--------------------------------------|-----------------------------------------------|
| パラメータ名                  | 設定値                                  | 説明                                            |
| derivFilter             | "-16,-16,-16,-16,-16,-16,-16,-16,    | "Derivative filter weights"                   |
|                         | 16, 16, 16, 16, 16, 16, 16, 16, 16 " |                                               |
| pxPulseInhibitMask      | = 262142                             | "Pixel pulse inhibit mask"                    |
| pxPulseThres            | = 200                                | "Pixel pulse threshold"                       |
| pxOffsetAvgGap          | = 5                                  | "Pixel offset average gap for loRes"          |
| pxOffsetAvgLenPow       | = 4                                  | "Pixel offset average power of two for loRes" |
| pxFallEndThres          | = 0                                  | "Pixel FALL state end threshold"              |
| pxPFInhibitFlag         | = 0                                  | "Pixel PEAKFIND state inhibit flag"           |
| pxPFStateCntMax         | = 5                                  | "Pixel PEAKFIND state count max"              |
| pxPFQuitCntMax          | = 0                                  | "Pixel PEAKFIND state quit count max"         |
| pxQuickDoubleThres      | = 1                                  | "Pixel quick double threshold"                |
| pxNoiseInhibitMask      | = 262142                             | "Pixel noise inhibit mask"                    |
| pxNoiseThres            | = 100                                | "Pixel noise threshold"                       |
| pxNoiseRecordCleanLen   | = 2048                               | "Pixel noise record clean length"             |

sxspspsim version = 2009-12-08

表 7.2: Science Module 機能に関連するパラメータの設定値

としてスペクトル内に見られる各輝線に対して、簡単に Gaussian でフィットを行った。少なくとも、Al, K, Mn のそれぞれの輝線が確認できているが、その他にも 800 ~ 900 (chan) 付近にも不明なラインが 見られた (図 7.3)。また、Mn-K $\alpha$ のラインフィットより半値全幅 (FWHM) を求めると、 $\sigma$ を標準偏差 として

FWHM = 
$$2\sqrt{\ln 2} \sigma \times \frac{\text{Mn-K}\alpha \, \mathcal{O} \, \Xi \, \lambda \, \mathcal{I} \, \mathcal{I} - [\text{eV}]}{\text{Mn-K}\alpha \, \mathcal{O} \, \text{loResPH} \, \mathbf{i} \, [\text{chan}]}$$
 (7.2)  
~  $2.35 \sigma \times \frac{5894}{5382} \sim 18.66 \, [\text{eV}]$ 

となり、loResPH値の段階で $Mn-K\alpha$  5.9 keV の入射 X 線に対して約 18 eV のエネルギー分解能が出ていることが見積もれる。



図 7.2: (上) Mn-K $\alpha$ , K $\beta$ 線 (下) K-K $\alpha$ , K $\beta$ 線のフィット



図 7.3: (上) Al-Ka, K\beta線 (下) 不明なライン のフィット

図 7.4 は各輝線のエネルギーと loResPH 値の相関を示したものである。理論上、カロリメータのパル スハイトは入射 X 線エネルギーに対して線形の関係をもっている。そこで Al, K, Mn の Ka, Kβ 線の データ点に対して

 $E = aPH + bPH^2 + cPH^3$ 

という loResPH 値の 3 次関数でフィットし、そこからの誤差を比較した。図 7.4 より、Al-K $\alpha$ 線が -125 eV、Al-K $\beta$ 線は -40 eV ほどフィット関数からずれていることが分かった。何らかのオフセットが乗っているものと推測されるが、この評価は loResPH 値で行っているのでパルスハイトが正確ではない。そのため最適フィルタ処理を施してから評価する必要がある (節 7.7)。



eV/chan Al-K $\alpha$ 1486.55/1355.21 1.09 $Al-K\beta$ 1557.44/1507.58 1.03 $K-K\alpha$ 3312.89/3222.75 1.02 $K-K\beta$ 3589.60/3469.37 1.03 $Mn-K\alpha$ 5895.04/5382.07 1.09 $Mn-K\beta$ 6490.45/5834.04 1.11

表 7.4: loResPH 値 1 chan 当たりのエネルギー

#### Time vs loResPH , derivMax

loResPH 値の時系列でのプロットを図 7.5 に示す。Al, K, Mn のラインの他に低エネルギー側でいく つか不明なラインが見えていることが分かる。ここで同様にして微分値のピーク derivMax 値を時系列 でプロットし、loResPH 値の場合との比較をした。loResPH 値と derivMax 値の場合では、Al, K, Mn のラインはほぼ一致しているように見えるが、Al のラインよりも下のエネルギー領域では両者の値の 振るまいが異なっていた。また、derivMax 値で見ると Mn-K $\alpha$  線はおよそ 24200 (chan) であり、今回 のパルスのトリガをかけるスレッショルドレベル (pxPulseThres) は 200 としているので、低エネル ギー側のしきい値は 50 eV 程度ということになる。



 $\boxtimes$  7.7: Time vs loResPH (Mn-K $\alpha$  / K-K $\beta$ , K $\alpha$ )

図 7.8: Time vs loResPH (K-K $\beta$ , K $\alpha$  / 不明)

 $\boxtimes$  7.9: Time vs loResPH (loResPH < 600 chan)

#### loResPH vs derivMax

loResPH 値と derivMax 値の相関を調べた (図 7.10)。loResPH 値に対して derivMax 値が線形増加す る正規イベントの他に、いくつかのブランチや、直線から大きく外れたイベントパルスが見られた。こ れらのイベントを実データから抜き出し、波形の検証を行った。



 $\boxtimes$  7.10: loResPH vs derivMax

#### - loResPH = 16000 chan 付近

図 7.10 の loResPH = 16000 chan 周辺に見られるイ ベントパルスの波形を確認したところ図 7.11 のようなパ ルスが得られた。SEQ\_NO (シーケンス番号) とは使用 データの頭から数えたサンプル数である。このパルスの 場合、ファーストパルスの 6.56 ms (82 サンプル) 後に セカンドパルスが入射している。PSP-sim が loResPH 値 を計算する際、ADC サンプル値のピーク値からトリガ 直前の計算した loResBase 値を差し引いて求めるが (式 4.7)、直前にファーストパルスがあるためピーク値より も loResBase 値が上回ってしまい、結果として loResPH が負の値になってしまっている。loResPH は 14 bit の符 合無し整数として定義しているので、負の値はアンダー フローして ( $2^{14}$ -[元の値]) として表現されていた。実際 の Science Module では負の loResPH 値は 0 とされる仕 様になっている。



図 7.11: SEQ\_NO :18571040 (x = 21040)青:derivative 緑:adcSample

#### - loResPH = 8200 chan 付近

図 7.10 の loResPH = 8200 chan 付近に見られる急激 に satiation してしまっているイベントパルスの波形を 確認したところ図 7.12 のようなパルスが得られた。ADC サンプル値の波形に見られるように上方で波形が clip し ているのが分かる。これは節 7.2 で述べた通り、使用デー タのフォーマットの問題で ADC サンプル値が 4095 以上 を取れないため、この付近でパルスが clip していること になる。実際の PSP では ADC サンプル値が 8192 (2<sup>14</sup> : 14 bit) が上限値のため、loResPH はこれより高い値で clip する。

– Cross-talk イベント

図7.10において、loResPH(0-1000)の範囲で正規イベ ントよりもやや大きい傾きをもって伸びているイベント が存在する。パルス波形が、正規イベントよりも時定数 の短い形状をしているため、隣接する他のピクセルから の cross-talk イベントだと考えられる。このような crosstalk イベントは正規のイベントパルスと波形が異なるた め、PSP でトリガされた場合でも最適フィルタ処理が施 されると波高値が負になったりと正常に処理されない。 cross-talk イベントは複数のピクセルに同時刻に来るも のが多いため、cross-talk イベントの除去は衛星から地上 にデータを降ろした段階で、オフラインで同時刻のイベ ントを除外する方法が考えられている。



図 7.12: SEQ\_NO :13749684 (x = 684)青:derivative 緑:adcSample



青:derivative 緑:adcSample

#### - Double pulse

図 7.10 に見られる、正規イベントの左側から左下に伸 びる 2本のブランチを成すイベントを抜き出したところ、 図 7.14 のようなダブルパルスイベントが確認できた。実 際には、CPU で平均パルスで差し引いてセカンダリーパ ルスの検出を行うため、ダブルパルスのパルスハイトは より正確な波高値が計算される (節 7.7)。

#### - QuickDouble

この波形データにおける全 148030 イベントの内、 61089 イベント (41%) が quickDouble のフラグが付い ており、高い割合で存在した (図 7.15)。そこで、quick-Double フラグのあるイベントパルスをいくつか確認した ところ、正規の quickDouble イベントの他に図 7.16 のよ



図 7.14: SEQ\_NO :258049904 (x = 904)青:derivative 緑:adcSample

うなパルスが含まれていた。ある程度波高値の大きいパルスは AC カップリング<sup>1</sup>により、一度マイナ スに沈みこんでから再び波高値が正となり、pxPulseThres 値を越えてしまうため、 1 つのパルスでト リガを 2 回かけてしまっていた。この様なトリガされたパルスのテールではゆっくりとベースレベルに 戻るので、ベースラインに含まれているノイズを引っかけてしまい (derivative[ch] – derivPre[ch]  $\geq$ pxQuickDoubleThres[ch])、 quickDouble と判断されていたと考えられる。実際には、CPU でグレー ド付けをする際に、平均パルスを差し引いてセカンダリーパルスの検出を行うため、この様なパルスは 除外できると考えられる (節 7.6)。





青:derivative 緑:adcSample

図 7.15: QuickDouble フラグ付きのイベントパル スのプロット

<sup>&</sup>lt;sup>1</sup>XBox の ADC にはハイパスフィルターを入れることで AC カップリングで信号を読み出している。これは温度安定度な どによって DC レベルが振らつくとパルスのトリガがしにくくなる上、必ずしも DC 成分は必要としないため、AC 成分のみ を取りだしている。ハイパスフィルターの RC 回路は微分回路でもあるため、副作用としてパルスが沈み込んでしまう。また、 XBox にはハイカットフィルター回路も組まれており、サンプリングレートよりも高い周波数をもったノイズをカットしてい る。

#### 7.3.3 PXP\_PEAKFIND 範囲の変更

パルスのアンダーシュート後のテールがスレッショルドレベルを超えてしまう非正規の quickDouble イベントを除外するために、パラメータを変更することで再度イベントのトリガ処理を試みた。変更パラ メータは表 7.5 のとおりである。小節 4.7.1 で述べたようにパルスがトリガされてから PXP\_PEAKFIND state への移行後、(pxPFStateCnt  $\geq$  pxPFStateCntMax) となるまで PXP\_PEAKFIND state が 続けられる。しかし、前節では pxPFQuitCntMax = 0 で処理を行っていたため、パルスのピークを検 出後すぐに PXP\_READY state へと戻ってしまい、PXP\_PEAKFINDstate が機能していなかった。そこ で、微分波形が十分に 0 を下回ってから十分にベースラインへと収束するであろうサンプル数を推測し、 PXP\_PEAKFIND state 範囲を広げることでトリガ処理を行った。トリガされたイベントの loResPH 値 と derivMax 値の関係を図 7.17、さらにそこから quickDouble フラグの付いたイベントパルスのみをプ ロットしたものを図 7.18 に示す。

表 7.5: 変更したパラメータ

| パラメータ名          | 設定値                   |
|-----------------|-----------------------|
| pxPFStateCntMax | $5 \rightarrow 400^1$ |
| pxPFQuitCntMax  | $0 \rightarrow 400^1$ |

<sup>1</sup> 実際の FPGA では 8 bit 表記であるた め 255 までしか設定できない。



図 7.17: loResPH vs derivMax (PEAKFIND 範 囲を広げた場合)

図 7.18: QuickDouble フラグの付いたイベントパ ルス (PEAKFIND 範囲を広げた場合)

前節の図 7.10 と図 7.17 を比較すると、正規イベントから左側に伸びるダブルパルスイベントを含んだブラ ンチは除外されている。図 7.17 の derivMax = 14000 chan 付近に横に伸びるイベントの並びが見られた。 波形データを抜き出して確認したところ図 7.19 のようなダブルパルスが見つかった。PEAKFIND state 中にファーストパルスのピーク値よりも波高値の大きいパルスが入射したため、pxAdcSampleMax 値のみが更新されている。







図 7.20: SEQ\_NO :7134285 (x = 1285)青:derivative 緑:adcSample

QuickDouble フラグの付いたイベントパルス (図 7.18)を見てみると、こちらも derivMax = 14000 chan 付近にイベントが見られる。波形を確認すると図 7.20 のような正規の quickDouble イベントであることが分かった。PXP\_FALL state 中に次のイベントが入射し、pxderivMax 値は更新されなかったが、pxAdcSampleMax 値は上回っていたため値が更新されている。



青:derivative 緑:adcSample

7.22: 図 7.21 のベースライン拡大 青:derivative 緑:adcSample

また、loResPH 値が0~2000 程にかけて低い derivMax 値のイベントパルスは前節同様、図7.21 に 見られるパルスのテール部分をトリガしているものであった。この様に、cross-talk イベントのような波 高値の低いパルスをトリガした場合、すぐに波形がベースラインに戻るものの PEAKFIND state は400 サンプル経過するまで継続される。その間に波高値の高い正規のイベントが入射し、PEAKFIND state が終了した時点がそのパルスのテール部分であったためトリガがかかってしまったと考えられる。

以上の検証結果から、PXP\_PEAKFIND state の範囲を広げることで、ある程度の非正規イベントの 除去は行えることが確認できた。しかし、過度に範囲を広げてしまうと PEAKFIND の最中に別のパル スが入射してしまい、pxAdcSampleMax が新たに来たパルスの値につられて更新されてしまう可能 性が高まる事が分かった。これでは正確にイベントを区別できておらず、PEAKFIND の機能としては 望ましくない。そのため、クロストークやパルスのテールといった非正規イベントの処理はFPGA 側で 行うには限界があり、CPU 側の処理で解決させる必要がある。

## 7.4 CPU処理のシミュレーション

前節までは FPGA 処理までの波形処理を検証したが、SpaceCard 上 CPU のタスクであるイベント のグレード付け、最適フィルタ処理も PSP-sim で再現する。各種パラメータの設定値を表 7.6 を示す。 PSP-sim の version の関係上、節 7.3 とは boxcar 微分の方法が異なり、パラメータが変更されているが、 実質的には同等の処理を行っている。

| •         | •        | 0010 10 00     |  |
|-----------|----------|----------------|--|
| eveneneim | version  | $-2010_{12}08$ |  |
| svebebenn | VCISIOII | - 2010-12-00   |  |

| パラメータ名                | 設定値          | 説明                                                 |
|-----------------------|--------------|----------------------------------------------------|
| sampleRateInHz        | = 12500      | "sample rate in Hz"                                |
| pxPulseInhibitMask    | =262142      | "Pixel pulse inhibit mask"                         |
| pxNoiseInhibitMask    | =262142      | "Pixel noise inhibit mask"                         |
| derivHalfLen00        | =8           | "Derivative filter half length (0-32)"             |
| pxPulseThres          | =50          | "Pixel pulse threshold"                            |
| pxOffsetAvgGap        | $=\!5$       | "Pixel offset average gap for loRes"               |
| pxOffsetAvgLenPow     | =4           | "Pixel offset average power of two for loRes"      |
| pxFallEndThres        | =0           | "Pixel FALL state end threshold"                   |
| pxPFInhibitFlag       | =0           | "Pixel PEAKFIND state inhibit flag"                |
| pxPFStateCntMax       | $=\!5$       | "Pixel PEAKFIND state count max"                   |
| pxPFQuitCntMax        | =0           | "Pixel PEAKFIND state quit count max"              |
| pxQuickDoubleThres    | =1           | "Pixel quick double threshold"                     |
| pxNoiseThres          | =25          | "Pixel noise threshold"                            |
| pxNoiseRecordCleanLen | =2048        | "Pixel noise record clean length"                  |
| preTrigPnts           | =150         | "Number of samples before pulse trigger"           |
| preTrigPntsH          | =150         | "Number of samples before pulse trigger for H-res" |
| preTrigPntsM          | =37          | "Number of samples before pulse trigger for M-res" |
| secondThres           | =100         | "Threshold for 2nd pulse"                          |
| secondTrigGapLen      | =25          | "Gap in samples to start 2nd pulse search"         |
| secondThresUseLen     | 500          | "Length to use 2nd threshold"                      |
| avgPulseMax           | $=\!5386.65$ | "Maximum value of the avgpulse in ADU"             |
| $avgPulse_eV$         | =5894.2      | "X-ray energy of the avgpulse in eV"               |
| $phaScale_eV$         | =0.5         | "Energy scale of the calculated PHA in eV/chan"    |
| noiseInterval         | =12500       | "Minimum length between noise records"             |
| clipSkipLen           | =874         | "Interval in sample to skip when clipped"          |

表 7.6: Science Module 機能に関連するパラメータの設定値

## 7.5 平均パルス、テンプレート作成

セカンダリーパルスのサーチをするための平均パルス、そして最適フィルタ処理にもちいるテンプレート波形を準備する。実際の PSP では、機上でリアルタイムに新しいパルスレコードとノイズレコードか

ら、平均パルスとテンプレートの生成を行われる。しかし今回は、使用データから手動でクリーンな波 形データを数百パルス程度選定し、平均することで平均パルスを生成した(図7.23)。また、PSP-sim に よって出力されたノイズレコードを用いることでノイズスペクトルを生成し(図7.24)、平均パルスと合 わせることで(式4.15)、テンプレート波形を作成した(図7.25)。同様にして Medium-Resolution 用の テンプレートも作成した。

平均パルス用のパルスの選定に際して、使用データの頭 10<sup>8</sup> サンプルを PSP-sim で走らせてトリガさ れたパルスの内、Mn-K $\alpha$ 線のエネルギーに相当する波高値のものを収集した。図 7.2 の Mn-K $\alpha$ を参考 に、ピークの ADC サンプル値が 5365 ~ 5410 の範囲のイベントパルスを抜き出した。さらに、他の入 射イベントによって形状が歪んでいるものを除外するため、波形の最小値、時間積分値も範囲指定する ことでよりクリーンなパルスのみを選定した。表 7.7 に選定基準をまとめた。なお、PSP-sim 処理後の 出力データの波高値は電圧値に変換されているため、XBox の ADC 上限値 3 V =  $2^{14}/2$  を元に電圧値 で波高値の範囲指定を行っている。

| 表 7.7: | 平均パル | ス用イベ | ントパ | ルスの | )選定基準 |
|--------|------|------|-----|-----|-------|
|--------|------|------|-----|-----|-------|

| 制限項目    | 指定範囲                  |
|---------|-----------------------|
| 最大値     | 1.9648 - 1.9813 (V)   |
| 最小値     | -0.522 - $-0.516$ (V) |
| 時間積分値   | 0.95 - 1.05           |
| 該当イベント数 | 339 / 958 パルス         |





図 7.23: 5.9 keV 相当のイベント (339 パルス) か ら生成した平均パルス: (Record length = 1024)

図 7.24: ノイズレコード (36855 レコード) から生 成したノイズスペクトル: (Record length = 1024)

### 7.6 グレード付け

前節で作成した平均パルスを用いてセカンダリーパルスのサーチを行い、各イベントパルスにグレー ド付けを行った。グレード付けは小節 4.10.2 の定義に従った。出力結果から得られた Hp, Mp, Ms, Lp, Ls それぞれのカウント数を表 7.8 にまとめた。



図 7.25: 平均パルスとノイズスペクトルから生成したテンプレートの波形: (Template length = 1024)

| グレード | カウント数 | カウントレート       | 割合    |
|------|-------|---------------|-------|
| Hp   | 44704 | 0.74  count/s | 30.6% |
| Mp   | 3119  | 0.05  count/s | 4.3%  |
| Ms   | 3237  | 0.05  count/s |       |
| Lp   | 30282 | 0.50  count/s | 65.0% |
| Ls   | 64766 | 1.07  count/s |       |

表 7.8: グレード毎のカウント数

#### 7.6.1 loResPH vs derivMax

次に、トリガされたイベントの loResPH 値と derivMax 値の相関をグレード毎に調べた (図 7.26, 7.27, 7.28)。最適フィルタ処理を行う前の図 7.10 に比べ、正規イベント以外のブランチなどが消え、loResPH 値に対してリニアに derivMax 値が上がっているのが分かる。このことから平均パルスの差し引きによるセカンダリーパルスのサーチによって行ったグレード付けの処理が非正規イベントに対して有効であることが明らかとなった。しかし、それと同時に、ランダムに生じるとされる cross-talk イベントも Hp, Mp, Ms では見受けられなくなり、全て LR に含まれていた。これは使用したデータの cross-talk イベントが実際にはランダムに到来しておらず、何らかの因果関係により正規イベントに近接した時刻、つまり LR の範囲に到来していると考えられる。これにより、LR イベントの割合が高くなった可能性がある。



図 7.26: loResPH vs derivMax (Hp イベント)

図 7.27: loResPH vs derivMax (Mp イベント)

図 7.28: loResPH vs derivMax (Ms イベント)

## 7.7 最適フィルタによる波高値計算

作成したテンプレート波形を用いて、上記の Hp, Mp, Ms に対して最適フィルタ処理 (小節 4.10.3) を 行い、各イベントパルスのの波高値 (PHA) を求めた。以下に各グレード毎の PHA, loResPH, derivMax のスペクトルを示す。図 7.38, 7.39, 7.40 は各グレードの Mn-K $\alpha$  線を PHA, loResPH, derivMax で同時 プロットしたものである。Mp, Ms の 2 つはカウントレートが低いため統計が悪いが、Hp で見てみると PHA, loResPH, derivMax の順にエネルギー分解能が良いことが分かる。PHA に関しては、軌道角運動 量の違いによる Mn-K $\alpha$ 1, Mn-K $\alpha$ 2 が分離できていることが見てとれる。



sxstbools/, abe/20101208/sample1\_7e8-master/ishisaki/piot-pulsecalc\_Hp.com



図 7.29: Hp の PHA のスペクト ル

図 7.30: Hp の loResPH のスペ クトル

図 7.31: Hp の derivMax のスペ クトル



図 7.32: Mp の PHA のスペク トル



図 7.35: Ms の PHA のスペクト ル



図 7.38: Mn-KaのHpイベント (黒: PHA, 赤: loResPH, 青: derivMax)







図 7.34: Mp の derivMax のスペ クトル



図 7.36: Ms の loResPH のスペ クトル



図 7.37: Ms の derivMax のスペ クトル





図 7.39: Mn-KaのMpイベント (黒: PHA,赤: loResPH,青: derivMax)

図 7.40: Mn-Ka の Ms イベント (黒: PHA, 赤: loResPH, 青: derivMax)
### 7.8 エネルギー分解能計算

前節で得られた最適フィルタ処理後の波高値 PHA の値からエネルギー分解能の計算を行った。

#### 7.8.1 ベースライン分解能

マイクロカロリメータのエネルギー分解能は、ベースライン分解能によって制限される。ベースライン分解能とは、X線入射パルスが無い時のノイズによるベースラインの揺らぎをエネルギーに換算したものである。ここでのノイズは、カロリメータの半導体温度計の動作点での抵抗Rによって決まる取り除くことのできないカロリメータの固有ノイズや、信号読み出し装置のJFETから来る読み出しノイズなどによって決まる。一方、X線入射時のノイズは、X線パルスの入射によって温度計の抵抗Rや温度計感度 αが動作点とは異なるため、Rやαに大きく依存する固有ノイズが変化し、S/N比が異なる値となる。また、カロリメータ素子へのX線入射位置の依存性によって波高値のばらつきが生じるため、実際のエネルギー分解能はベースライン分解能より劣化する場合が多い。

今回は、PSP-sim のピクセルノイズトリガ (PXN) 機能で収集したノイズレコードに対して、前節の最 適フィルタ処理で適用させたものと同じ最適フィルタテンプレートを適用することでベースラインの揺 らぎを調べた。なお、エネルギーの変換は、PHA のスペクトルの Mn-Ka 線のピークの PHA を 5894.2 eV として算出している。図 7.41 がベースラインのヒストグラムの結果である。図中の赤線はこのヒス トグラムに 1 つのガウシアンをフィットさせたものである。このフィットから、ベースラインのエネル ギー分解能への寄与を求めると、FWHM で 3.94 eV であった。



### 7.8.2 エネルギー分解能 (at Mn-Ka: 5.9 keV)

次に、X線パルスが入射時のエネルギー分解能を調べる。エネルギー分解能は、使用データ内に含ま れている Mn-K $\alpha$ のラインに対してフィットを行って導出する。Mn-K $\alpha$ 線はさらに、軌道角運動量の違 いによって Mn-K $\alpha$ 1 (5.89875 keV), K $\alpha$ 2 (5.88765 keV) の 2 つのラインをもっている。この 2 つのライ ンは非常に接近したエネルギー範囲に現れるため、優れたエネルギー分解能がなければ分離することが できない。これらのラインは、K $\alpha$ 1 が 2 本、K $\alpha$ 2 が 5 本の計 7 本の自然幅をもつ Lorentzian の重ね 合わせで表すことができる。PHA から得られた各グレードのエネルギースペクトルに対してフィットを 行ったものが図 7.42 である。青線が個々の Lorentzian の寄与を示しており、自然幅をもつ Lorentzian を Gaussian でコンボリューションしてフィットしたのが赤線である。Mp, Ms に関しては統計が悪く フィットが上手くいっていないため Mp よりも Ms の方が良い分解能が出ているが、Hp イベントで見た

ところ、エネルギー分解能は FWHM で 4.8 eV と 2 つのラインがしっかりと分離できていることが確認 できる。同時に、FWHM を K $\alpha$  のもので固定した Mn-K $\beta$  のエネルギースペクトルのフィットを図 7.43 に示す。こちらも Mp, Ms ともにカウント数が少なく、フィットができていない。



図 7.42: 右から Hp, Mp, Ms のエネルギースペクトル (Mn-K $\alpha$ 1, K $\alpha$ 2)



図 7.43: 右から Hp, Mp, Ms のエネルギースペクトル (Mn-K<sub>β</sub>)

7.8.3 リニアリティー補正

カロリメータは理想的には入射 X 線のエネルギーによらないとされているが、実際には入射するエネ ルギーが高くなりパルスハイトが大きくなると、ゲインのばらつきの影響が大きくなり、エネルギーの 低い方が分解能は良くなるという傾向がある。そこで、PHA とエネルギーの関係を  $Mn-K\alpha$ ,  $K\beta$  の 2 つ のピークを用いて、この 2 点を通るような 2 次関数

$$PHA = aE + bE^2 \tag{7.3}$$

でフィットし、これを補正関数とすることで各イベントパルスの PHA を補正してエネルギーに変換す る。ここでの、*a*, *b* がフィットパラメータである。図 7.44 に各グレード毎のフィット結果を示す。それ ぞれの縦軸 PHA はすでに Mn-Kα のラインのピーク値が 5.89875 keV になるよう規格化されている。



図 7.44: 右から Hp, Mp, Ms のリニアリティー補正関数 (Mn-K $\alpha$ , K $\beta$ )

これにより得られたフィットパラメータから、PHA をエネルギーに変換することで、リニアリティー 補正後のエネルギー分解能を調べた。結果を図 7.45 にまとめる。補正前に比べて Hp, Mp, Ms 共にエネ ルギー分解能が劣化しているのが分かる。しかし、依然として 6 eV 前後と 2 つのラインをある程度分 離できる高い分解能を実現できている。また、Hp のフィットパラメータを用いてベースライン分解能を 再度導出してみたところ、こちらは分解能が改善していた (図 7.47)。これは、補正関数の低エネルギー 側での傾きが大きくなっているため、同じノイズの振幅に対してエネルギーに換算した場合の自然幅が 短くなったためである。



図 7.45: 右から Hp, Mp, Ms のリニアリティー補正後のエネルギースペクトル (Mn-Ka1, Ka2)



図 7.46: 右から Hp, Mp, Ms のリニアリティー補正後のエネルギースペクトル (Mn-K)



図 7.47: リニアリティー補正後のベースライン分解能

#### 7.8.4 考察

以上の結果から、PSP による波形処理アルゴリズム (イベント抽出、グレード付け、波高値解析) は、 SXS の要求性能 (< 7 eV) を満たすエネルギー分解能を達成できることが立証できた。本検証では、PSP を模擬したシミュレーションプログラムで行ったため、検出器も含めた実機での評価試験で実際に線源 からの X 線を捉えることで同程度のエネルギー分解能が得られることを期待する。

# 第8章 まとめと今後

現在、2014年打ち上げを目指し、日米欧の国際協力でX線天文衛星「ASTOR-H」の開発が進められ ている。衛星には軟X線分光システムSXS(Soft X-ray Spectrometer)が搭載され、0.3 ~ 12 keV のエ ネルギー領域を7eV以下という超高精度のエネルギー分解能を実現することができる。検出器には半導 体温度計を用いたX線マイクロカロリメータと呼ばれる装置が使われる。入射X線光子のエネルギー を素子の微小な温度変化で捕らえ、極低温下(50mK)で動作させることで優れたエネルギー分解能を得 ることができる。カロリメータで検出されたX線パルス信号は米開発担当のXBox(X-ray Box)と呼 ばれる装置へと出力される。ここでは、信号のフィルタリング、増幅、A/D変換などが行われ、ノイズ の少ないLVDS(Low Voltage Differential Signaling)で差動出力で日本開発担当のPSP(Pulse Shape Processor)と呼ばれる装置へと送られる。PSPとは、SXSのデジタル波形処理システムのことであり、 私はこのPSPの開発チームに所属している。PSPは首都大、埼玉大、ISAS/JAXAが設計・開発を担当 し、三菱重工業(MHI)が開発・製造を行っている。

PSP は主に FPGA を搭載した Mission I/O (MIO)ボードと、CPU を搭載した SpaceCard ボードと呼 ばれる 2 つの共通ボードで構成されている。XBox から送信されてきた検出器のデジタル波形データは まず MIO ボードに送られ、微分波形の計算とそれを用いたパルスのトリガ(抽出)を行う。トリガ情報 と波形データは、内部メモリや SDRAM といった記憶領域に保存される。CPU はその保存された波形 データからイベントパルスを呼び出し、さらに詳細なパルスのトリガを行う。そして、それぞれのイベ ントパルスの前後のイベントパルスとの時間間隔に応じて全てのイベントにたいしてグレード付けを行 う。グレード付けをされた各イベントは最適フィルタと呼ばれる処理が施されることでより正確な波高 値が求められる。

我々は PSP の試験用モデル (BBM: Bread Board Model) を用いて性能評価試験を行い、その結果を 元に MIO の FPGA ロジックの仕様の決定を完了した。現在、フライト品と同等の性能を持つ性能実証 モデル (EM: Engineering Model) の製作を進めている段階である。

今回私は、試験用モデルを用いた性能評価試験を行い、PSPの各モジュールの機能が正常に動作して いるかを検証した。XBoxと同等の出力をする XBox Digital Simulator (XDS)を用いて、PSP に実際 の波形データを出力し、XDS – MIO 間の電気インタフェースが問題ないことを確認した。また、MIO 内の波形処理のモジュールが正常に機能していることを確認し、各バッファに波形データやトリガ情報 などが正常に取得されていることを確かめた。

また、2010 年 8 月に XBox を開発している NASA/GSFC を訪問し、実際に XBox-BBM との噛み合わせ試験を行った。こちらでも、XBox-BBM – PSP-BBM 間の電気インタフェースに問題がないことを実証した。さらに、検出器を模擬したダミーパルスを送出する Detector-Simulator を接続し、XBox を介して PSP で正常にデジタル波形データの取得、保存が行われていることを確かめた。

並行して、CPUの処理速度測定と、MIO – SpaceCard 間のデータ転送速度を測定を実施した。CPUの処理速度測定では、CPUを100%使い、典型的な平均パルス波形を連続的に処理を行わせた。その結果、PSP に要求される150 cts/s/arrayを十分に満たしていることが判明した。

MIO – SpaceCard 間のデータ転送速度測定では、計測結果から、要求される転送速度を満たす最小の ボード構成は PSP 1 系統当たり 1 MIO + 2 SpaceCard ボードの 3 ボード構成であることが分かった。 但し、CPU 負荷が大きく、空き時間が 40%程度しか確保できていなかったが、CPU の処理速度の結果 から、この程度の空き時間でも許容範囲は超えないことが分かった。転送速度に関しては、次期モデル

#### で改善されることが見積もられている。

また、3ボード構成で開発を進めるためには MIO ボードで行う処理を1つの FPGA に収めなくてはな らず、FPGA リソースを確保する必要が生じた。FPGA ロジック最適化のため、冗長パラメータの削除 や微分計算方法の変更が提案された。特に微分計算は最もロジックを使用する処理の1つであったが、 PSP に要求される性能に影響を与えない方法をとる必要があった。私は、PSP と同じアルゴリズムで波 形データの微分計算の際の boxcar derivative 関数のデータ長を変えて計算を行い、その各データ長で計 算した際のノイズの RMS を調べることで、PSP の要求性能を満たせる最適なデータ長を調べた。その 結果、±32 の長さを取れば、十分に性能を満たせることが判明し、変更後の微分値計算方法に問題がな いことを確かめた。これにより、EM 品ではこの3ボード構成で開発を進めることが決定している。

また、これらとは別に、ソフトウェア上で PSP の機能を模擬した PSP シミュレーションプログラム を用いて PSP の波形処理のアルゴリズムが実際の検出器のデータに対して正常に機能するかを検証し た。その結果、FPGA の微分波形をもちいたトリガ機能と、CPU によるセカンダリーパルスのサーチ 処理によって、目的の正規イベントパルスを正常に抽出できていることが分かった。また、トリガされ たパルスデータから各グレードに対してエネルギー分解能を算出したところ、期待されるエネルギー分 解能が得られた。これにより、PSP のアルゴリズムの妥当性が証明された。

今後、EM品の完成しだい、実際にNASAの開発しているXBoxと実際のカロリメータ検出器とを繋 いだ end-to-endの試験を実施予定であり、その試験結果に基づいて実際の衛星に搭載されるフライト品 (FM)の設計を確立させていく予定である。

# 付録A XDSデータ書き換え手順

XDS 内のデータの書き換えは、FPGA の Rom を一時的に書き込み専用にして、データファイルを XBox に流し込む必要がある。

データ書き換え手順は以下のとおり行う。

- 1. sof ファイル (FlashRom の write 専用ファイル) を Qualtus で読み込む (今回は GSFC の XBox 専用 sof ファイル: Flash\_wr\_sw6\_blks0\_7.sof を使用)
- 2. FPGA に sof ファイルを読み込む場合は図 A.1 の様に USB Blaster (ALTERA 製) を左側の端子 に接続
- 3. FlashRom に書き込むデータの入った PC と mini USB で接続 (図 A.1)



図 A.1: PC - XDS の接続内部

| dit Operate Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Browse Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12 length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 If File stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| vin Ihandie t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o Device Gror Stream So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | urce Choose File Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Create                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Binary (16bit)       |
| KUSB-0 Pound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quickose moode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Stream from File</li> <li>university of the separated her values</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | from 19 columns, or if Binary file-#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of 16bit words       |
| per file read # of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 bit words should be divisible by 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eat number of 16 bit words t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n rand per file read |
| 4980736 # of 16 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bit words to send per file read s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hould be divisible by 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o sena per nie reau  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data File Path/name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| Create Data Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data Stream Created by this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| Random values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ✓ 2a.Choo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ise Type of Data Stream to Cre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ate                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| \$1995 # of 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 bit words to send per Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| # 1995 # of 16<br>defau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 bit words to send per Cycle<br>ited to multiple of 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| # 1995 # of 10<br>defau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 bit words to send per Cycle<br>alted to multiple of 19<br>yted Data stream continuously 2b. Choose wheth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | her to send one block or contir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uous stream          |
| # 1995 # of 16<br>defau<br>Send creat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 bit words to send per Cycle<br>afted to multiple of 19<br>ited Data stream continuously <b>2b. Choose whetl</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | her to send one block or contir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uous stream          |
| # 1995 # of 10<br>defau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 bit words to send per Cycle<br>afted to multiple of 19<br>afted Data stream continuously 2b. Choose wheth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | her to send one block or contir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uous stream          |
| # 1995 # of 16<br>defau<br>Send creat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 bit words to send per Cycle<br>afted to multiple of 15<br>afted Date stream continuously 2b. Choose wheth<br>Date Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | her to send one block or contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uous stream          |
| Elements in Queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 bit words to send per Cycle<br>and beto multiple of 19<br>and Data stream continuously 2b. Choose wheth<br>Data Stream<br>Stopped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | her to send one block or contin<br>Data packets send to usb port<br>32000 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uous stream          |
| 1995 # of 1e<br>defau     Send creat     Elements in Queue     10000 -     D     Booo -     D     Cueue Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit words to send per Cycle<br>atted to mulpike of the second second second second second<br>Data Stream<br>Stoppel<br>3. Press Button to begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her to send one block or contin<br>Data packets send to usb port<br>32000 -<br>9 0 corport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uous stream          |
| Elements in Queue Si<br>Queue Si<br>Dono - D<br>Queue Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bit work to send per Cycle<br>and the markies of the second second second second<br>med Data Stream<br>Stream<br>3. Press Button to begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | her to send one block or contin<br>Data packets send to usb port<br>30000 -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | wous stream          |
| # 1995         # of 16<br>defau           Image: Send creating the send creating th                                                   | bit words to send per Cycle<br>and Dina stream continuous) 2b. Choose wheth<br>Dina Stream<br>Torcent<br>3. Press Button to begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | her to send one block or contin<br>Data packets send to usb port<br>30000-<br>\$27900 -<br>\$25000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uous stream          |
| # 1995         # of 1 a           defau         defau           Send cres         Send cres           Biements in Queue         Queue Si           8000 -         0           Queue Si         00000           \$10000 -         0           \$4000 -         0           \$4000 -         100000           \$4000 -         \$410000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit works to send par Cycle<br>and Data stream continuously 2b. Choose wheth<br>Data Stream<br>Trigopoli<br>as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | her to send one block or contin<br>Data packets send to usb port<br>30000 -<br>927500 -<br>925000 -<br>22500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wous stream          |
| 1995         # of 11           defad         defad           0         Send creat           0000-         D           0000-         D           0000-         0           0000-         0           0000-         10000           0000-         4.11 Queue St           0000-         4.11 Queue St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b & words to send par Quée<br>de la huste a 't<br>and Duéa tream continuculy' 2b. Choose wheth<br>D 2 Stream<br>3 Press Button to begin<br>are its filling that is being created<br>than the outh part is sending a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | her to send one block or contin<br>Data packets send to usb port<br>30000 -<br>\$27500 -<br>\$25500 -<br>22500 -<br>20000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uuuus stream         |
| 1995         + dilideral defaulteral defaulter                            | bit works to send per Cycle<br>and Data stream continuously 2b. Choose wheth<br>Data Stream<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her to send one block or contin<br>Data packets send to usb port<br>3000 -<br>\$2000 -<br>\$2500 -<br>\$2500 -<br>\$2500 -<br>2000 -<br>17500 -<br>17500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uous stream          |
| 1998         4 of 1/2 drau           Send ores         Send ores           0000-         0           0000-         0           0000-         0           0000-         0           0000-         0           0000-         0           0000-         0           000-         0           000-         0           000-         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b & work to send per Què<br>adde handles d'a transmostre<br>Med Duès dream continuously 2b. Choose wheth<br>Dubles 3000000<br>30.Press Munten to begin<br>are les filling then data is being created<br>than the usb port is sending it.<br>Betherem dua to settor or fin read Quès (ndice)<br>Duble to write (Datam)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bet to send one black or contin           Data packets send to usb port           30000           42           20000           42           20000           10000           10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uous stream          |
| 1998         4 of 14           Image: Send one         Send one           Image: Send one         Image: Send one           Image: Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bå vedta streken corkinucali 2 the Chonse whether the number of the constraints of t                                                                                                                                                  | her to send one block or contin<br>Data packets send to uib port<br>30000-<br>42<br>27500-<br>42<br>2000-<br>17500-<br>17500-<br>15500-<br>15500-<br>15500-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uous stream          |
| 1995         e of 17           1995         e of 17           1995         Send ores           2000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0           1000-         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | be a work to send per Oyde     de houses of the output of the     mod Diva tream continuous)     2h. Choose wheth     mod Diva tream continuous     arrows     arror     arrows     arror     arr                                                                                                                                                  | her to send one black or costin<br>Data parkets send to usb part<br>30000-<br>4 27000-<br>4 27000-<br>20000-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15                                                                     | uous stream          |
| 1995         • of 11           disa         disa           disa         send creat           Bements in Queue         Queue Si           8000 -         Queue Si           0         4.000-           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b & works to and per Cycle<br>and Data stream continuous) 2b. Choose wheth<br>Data Stream<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | her to send one block or contin<br>Data packets send to usb port<br>30000-<br>42 27500-<br>42 2500-<br>20000-<br>17500-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550-<br>1550- | uous stream          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | be a work to send per Oyde     add bona date ais     add bona                                                                                                                                                  | her to send one block or contin<br>Data parkets send to usb port<br>30000-<br>4 27000-<br>20000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>15000-<br>1500                                                                     | uous stream          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b & works to and per Cycle<br>deformation in the second second second second<br>Data Stream<br>Base<br>3. Press Button to begin<br>mere is filling then data is less proceed<br>that the way per it is working and cycles (ndec)<br>Data to are (Stream)<br>Base (Stream)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | And the send one block or control<br>Data packets send to usb port<br>30000-<br>4 27500-<br>4 25000-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-                                                                         | uous stream          |
| (1995 • of it it of the second s | be a work to send per Oyde     add to handbe i d'     add to ha                                                                                                                                                  | her to send one block or contin<br>Data parters send to usb port<br>30000-<br>4 25000-<br>2000-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500                                                                     | uuus stream          |
| 1995         4 of all of a                            | b & vada to and par Cycle<br>de to matter al to<br>the Data stream continuous) 2b. Choose whether<br>Data Stream<br>are 5 Million to begin<br>are 5 Million Stream to begin<br>the Million Stream to begin | her to send one block or control<br>Data packets and to usb port<br>30000-<br>42 27500-<br>42 25500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-                                                                         | uous stream          |
| 1995         4 of a of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b & vadio sandpar Què<br>ade l'autorità de la sub benga<br>arres la filiada de la sub benga cented<br>arres la filiada de la sub benga cented<br>arres es filiang then data sub benga cented<br>tan the useb port sandparts arres de la coles (object)<br>la bittere data coles arres de la coles (object)<br>la bittere data coles (object)<br>la bittere data coles (object)<br>la bittere data coles (object)<br>la bittere data coles (object)<br>la coles d           | her to send one black or contin<br>Data parties send to usb port<br>3000-<br>4 2500-<br>2000-<br>15500-<br>15500-<br>15500-<br>15500-<br>15500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-<br>25500-                                                                      | uous stream          |

図 A.2: LabView 操作画面

## 4. XDS 電源 ON

- 5. LabView ver.7.1 (National instruments 製) を起動 (図 A.2)
- 6. Run をクリック data stream で file を選択 type of file で binary (16bit) を選択
- 7. Data stream from file に word 数 を指定する (4980736 words) 備考参照
- 8. data file path/name で書き込むデータファイルを選択 (1 block 分) → sub-simshift19-0.bin を選択

9. \*-0.bin を書き込む時は、XDS のダイヤルを switch1 にする (図 A.3)



\*-1.bin の時は switch2, \*-2.bin の時は switch3, ... と繰り返す (switch8 まで存在)

 $\boxtimes$  A.3: XDS  $\mathcal{O}$  switch

- 10. stopped をクリック → ウィンドウに波形が走り始める
- 11. 波形が停止し、書き込みが終了したら stop をクリック
- 12. さらに続けて file を書き込むには、LabView を再起動 (ウィンドウを閉じる)
- 13. 以降は 8 switch (32 block) 分、8. ~ 12. を繰り返し

#### (備考)

- XDS のデータの書き換えは、1dataset 当たり 32 block 書き込み可能。
   1 block =9961472 byte (= 0x980000 byte)= 4980736 words
   1 block= 262144 sample ~ 21sec なので、32 block で約 11 分の Science data になる。
- 1 つの sof ファイルで 8 block 書き込み可能。
   → 1 データセットに対して 4 つの sof ファイルが必要
- QuickUSB.dll (bitwise 社製モジュール)を用いるため、1度に転送できるサイズは16MBに制限されている。
- XDS に取り付けられたダイヤルは、読み取り時はデータセットの切り替え (8 channel) 用、書き込み時は1つの sof ファイルに対する block 切り替え (8 block) 用と役割が異なるため要注意。

FlashRomはNand type, Nor typeの2タイプあり、XDSは前者を使用している。Nand typeのFlashRomは工場出荷時点でBad blockと呼ばれる書き込みできないエリアが存在するため、sofファイルにBad blockの位置を認識させる必要がある。そのため、個々のXDSに対応したsofファイルしか使うことができない。

(使用した LabView ファイル)

Astro\_H\_Data\_for\_19ch\_binary\_file\_v6.llb

→ 解凍後、起動ファイル (Astro\_H\_Data\_for\_19ch\_binary\_file\_v6.vi) を生成



図 B.1: pxWFRB[0]-[2]の波形 (Sampling rate: 12.5 kHz)



図 B.2: pxWFRB[3]-[5]の波形 (Sampling rate: 12.5 kHz)



図 B.3: pxWFRB[6]-[8] の波形 (Sampling rate: 12.5 kHz)



図 B.4: pxWFRB[0]-[2]の波形 (Sampling rate: 13.9 kHz)



図 B.5: pxWFRB[3]-[5] の波形 (Sampling rate: 13.9 kHz)



図 B.6: pxWFRB[6]-[8]の波形 (Sampling rate: 13.9 kHz)



図 B.7: pxWFRB[0]-[2]の波形 (Sampling rate: 12.5 kHz)



図 B.8: pxWFRB[3]-[5]の波形 (Sampling rate: 12.5 kHz)



図 B.9: pxWFRB[6]-[8]の波形 (Sampling rate: 12.5 kHz)

# 謝辞

本修士論文を進めるにあたり、たくさんの方々のお力添えを頂きました。この場をお借りして、感謝 の気持ちを送らせて頂きたいと思います。

私がこの研究室に入ったのは学部を含めると、もう3年前のことになります。私の研究生活は破門からのスタートでした。卒論も書かずに遊び呆けていた私を、破門だとおっしゃいつつも (bad joke だと思いたいですが...)研究室のメンバーとして受け入れて下さった寛大な大橋先生には大変感謝致しております。お忙しいにも関わらず、日頃から学生部屋に顔を出して下さっては私たち学生のくだらない雑談にお付き合い下さったり、時には学生が立ち直れなくなる一歩手前の毒をお吐きになることもありましたが、これも大橋先生の愛情と受け止め、なんとかここまでやってくることができました。天文ゼミや論文紹介、学会の発表練習の際でも、知識の至らない私にも理解しやすいよう分かりやすく噛み砕いてご教授下さり、自分自身大変勉強させて頂きました。本当にアホな学生ですみませんでした。

指導教官である石崎さんには言葉では表しきれない程の感謝をしております。TESの人員が不足して いるにも関わらず、PSPの実験にお誘い頂いた時のことは今も忘れません。石崎さんは覚えていらっしゃ らないかも知れませんが、ある飲み会の席で「自分のやりたいことをやるのが一番だ」とおっしゃって 下さったことが自分にとっては大変嬉しかったです。ログの取り方に始まり、どんな問題に対しても諦 めることなくあらゆる視点からアプローチすることで解を導き出す姿勢など、沢山のことを学ばせて頂 きました。また、GSFCでのPSP 噛み合わせ実験への参加という大変貴重な経験もさせて頂きまして、 本修論にも掲載することができました。少しでも石崎さんのお力になれたかどうか分かりませんが、石 崎さんと実験できたことを大変光栄に思います。3年間本当にお世話になりました。奥さまとわかばちゃ んにもよろしくお伝え下さい。

江副さんにも大変お世話になりました。聴衆に分かりやすい解説の仕方や資料の作り方、実験プロセスの組み方など、江副さんの仕事に対する姿勢にはいつも学ばせて頂いてばかりでした。低能な雑談にも楽しそうに参加して頂きとても感謝しております。ただ、Apple 純正の充電池を購入されていたのには驚いてしまいました。あれは eneloop と同等品ですよね。。

河原さんとは同じ部屋だったこともあり、色々とご迷惑をお掛けしました。研究の合間(?)の世間話は とても楽しく、あらゆる話題に対して批判的に返してくる河原さんにはいつも感服しておりました。石 津との一生噛み合うことのない会話がツボでした。たまーに、頭の悪い私に宇宙論を噛み砕いてご教授 頂きましてありがとうございました。

私の研究生活は、数々の先輩方や後輩達の支え無しではここまでやってくることができませんでした。 赤松さんには大変お世話になり、ご迷惑をおかけてしまいました。生意気で至らない私を見捨てること なく、丁寧に実験を教えて頂き、いつも進捗を気にかけて下さったりと本当に感謝しています。ありが とうございました。林さんとは実験で一緒になることはありませんでしたが、飲み会などでそれはそれ はお世話になりました。ときには横田さんから守って頂き、ときには酔っぱらってまじめに語らったり、 無礼にも先輩をイジリたおしたりと、アホな学生を構ってくださいましてありがとうございました。お 二人共 D 論大変だとは存じますが、頑張って下さい! かげながら応援しております。

横田さん、石川さん、佐藤さんは歳が近い先輩として大変構って頂きました。特に横田さんとは一つ の布団で寝た仲(?)でとても笑わせてもらいました。横田さんのマシンガントークは尊敬に値します。ホ ントに楽しかったです。石川さんは作業中でも嫌な顔一つせず、くだらない話に厳しい突っ込みを入れ たり、私のきれいなお尻を写真に収めてくださったりと、私たちの姉御として君臨なさっていました。佐 藤さんとは研究室でもあまりおしゃべりする機会は少なかったように思いますが、たまに私が調子づい ている時に、聞こえるか聞こえないかぐらいの声量で厳しい一言を下さり、我に返ることができること がありました。本当に先輩方のおかげで楽しい時間を過ごすことができました。ありがとうございます。

同期である、石津、塩野目、辺見ちゃんは、同じ試練を乗り越えた仲間として感慨深いものがありま す。本当に良い意味でも悪い意味でも居心地の良いゆったりとした仲間でした。修論書き奮闘中に敵将 を討ち取ったのは良い思い出です。辺見ちゃんにはいつも驚かされてばかりでした。自ら谷間世代とか なんとか言っていましたが、本当にこのメンバーが同期で良かったなと思っています。みんなありがと う!また飲みにでも行きましょう。

それから後輩のみんなには先輩にも関わらず、本当にお世話になりました。特に大石さんには沢山の 迷惑をお掛けしたと思います。TES 要員が不足しているにも関わらず、PSP をやりたいと言った私を快 く応援してくれたことには本当に感謝しています。至らない先輩でしたが、皆さん優秀な後輩達だと心 から思っているので私を反面教師にぜひ今後も活躍していってほしいと思います。

そして最後に PSP の研究を行うに当たって、埼玉大の方々には多大なる感謝の気持ちを述べたいで す。突然、どこの馬の骨とも分からぬ学生がひょこっと PSP チームに参加したにも関わらず、チームの メンバーとして快く受け入れて下さいました田代先生や辻本さんには大変感謝しております。瀬田さん は役立たずな私にいろいろ教えて下さったり話しかけて下さったりと、メンバーとして扱って下さった ことが大変嬉しかったです。本当にありがとうございました。そして同期として一緒に戦った下田君。 僕も君と一緒に実験できて本当に良かったです。チームに同期が増えることで自分の役割が少なからず とも分けられて関わらず、嫌な顔一つせず一緒に楽しく議論しながら実験できたことはとても楽しく有 意義な時間でした。「同期にあべちゃんがいてくれて良かった」と言ってくれたときは、照れくさいです がとても嬉しかったです。これから D 論に向けてぜひ僕の分まで活躍していって下さい!

長々と述べさせて頂きましたが、本当に僕はこの研究室の一員であったことを誇りに思います。皆様、 短い間でしたが本当にありがとうございました。