極低温X線検出器のための 断熱消磁冷凍機の開発

宇宙物理実験研究室 床井 和世

宇宙の構造と進化の解明

⇒ TES型X線マイクロカロリメータ開発

・超伝導遷移端を利用した極低温検出器

100 mK 以下で ΔE < 10 eV のエネルギー分解能

断熱消磁冷凍機 (Adiabatic Demagnetization Refrigerator; ADR) 宇宙環境で動作可能、100 mK以下を実現、温度安定度10 µK以下

地上実験用、小型で可搬型

首都大ADRー号機 (これまで)

- ・動作温度100 mKで10 時間保持
- 温度安定度 10 µK
- 最低到達温度 66 mK
- •液体He保持時間 40時間

ADR一号機故障 → ADR二号機製作 ★ ADR熱設計 ★ソルトピル(磁性体カプセル)の製作と評価

■ 1、ADRの原理

2、ソルトピルの製作

3、 冷却試験

4、まとめと今後

首都大ADRの中心部の構造

ヒートスイッチ

熱浴とのON、OFF

ソルトピル

エントロピー操作で磁気冷凍

超伝導コイル

ソルトピルに磁場を作る

8.8 cm

- 外筒 SUS304 (厚さ0.2mm、24mmφ、長さ80mm)
- ふた 無酸素銅
- 8N(99.999999%)銅線(0.1mmφ 160本) → ソルトピル内部の熱伝導をよくする

ソルトピルの磁性塩の選択 磁性塩が冷凍機の最低到達温度や保持時間を決める ● ADR-号機 ● ADR-号機 ● ADR-号機 ● ADR-号機

	● ADR一号機
	FAA : Feミョウバン
	$[Fe(NH_4)(SO_4)_212H_2C]$
キュリー温度	26mK
保持時間(流入	、熱1µWで60 mK)
	50 gで13時間

● ADR二号機 CPA:Cr K ミョウバン [Cr K(SO₄)₂・12H₂O] 4~11mK

50 gで10時間

- FAAより動作温度を低くできる
 NeXT衛星で使用予定
- ・磁化測定(2K) 文献値の 77~108%
- •質量密度測定
- 1.63±0.07 g/cm³(文献值1.83 g/cm³)

循環式結晶析出法

循環式を採用

CPAは結晶成長が遅い 強酸を使わない

冷却試験

Wisconsin大 商業用ADRを用い試作ソルトピルで結晶の評価

_ 容器構造を改善(SUS 1/3)

首都大 ADR二号機とソルトピルの評価 宇宙科学研究本部(宇宙研)将来的に導入見込みであり同様に評価

	Wisconsin大	首都大	宇宙研	
消磁開始温度; <i>T_H</i>	2.1 K	2.5 K	1.86 K	
最大磁場 ;B _H	4.2 T	1.36 T	2.5 T	
到達温度 ; T_L	64 mK	250 mK	120 mK	
(理想值) ; <i>T_{LO}</i>	50 mK	184 mK	75 mK	

グラフより *B/T ~ 一定* 到達温度 →初期温度と磁場で決まる 首都大の最大磁場が弱く改善が必要

理想的な到達温度は<u>内部磁場</u>Bで決まる 外部磁場0にしても残る磁化 $T_{I0} = T_H B_I / B_H (B_I = 0.1 \text{ T})$

到達温度と理想値の違いについて考察

到達温度を制限している要因

- ① 熱流入(支持ワイヤー、配線、輻射)
- ②磁場分布の不均一性
- ③ 容器に使われている SUS, Cu による冷却能力の損失
- ④ ソルトピル内部の温度勾配
- ⑤ Eddy current (渦電流) による加熱
- ⑥ CPA 結晶の内部磁場の不定性

熱流入の実測と見積もり

	Wisconsin大	首都大	宇宙研
<u>実測 </u>	0.25 [µW]	2.0 [µW]	1.5 [µW]
見積もり 支持ワイヤー	0.23	0.1	1.0
配線	0.004	0.18	0.13
輻射 (<i>σT</i> ⁴)	0.00007	0.0002	0.0002
超過熱流入		2 (26 K)	0.4 (17 K)
断熱消磁中の温度上昇	1 mK	16 mK	6mK

磁場計算ソフトを用いて磁場分布を見積もる

	Wisconsin大	首都大	宇宙研
均磁場	3.76 T	1.13 T	2.09 T
均/最大	90%	83%	84%
到達温度上昇	4~6 mK	23~37 mK	9~15 mK

	Wisconsin	首都大	宇宙研	
G の 実 測	0.83	0.5~0.83	0.48	[mW/K]
Pの実測	0.25	2.0	1.5	[µW]
温度勾配	0.3	2.4~4	3	[mK]

要因のまとめ(首都大)

① 熱流入(支持ワイヤー、配線、輻射)	16mK
② 磁場の不均一性	23~37 mK
 ③ SUS, Cu による冷却能力の損失 	~1 mK
④ソルトピル内部の温度勾配	2.4~4 mK
⑤ Eddy current による加熱	~0.4 mK
⑥ CPA 結晶の内部磁化の不定性 (<i>B_L</i> =0.1 Tを	定)

損失 計	43~59 mK	見積れ た指失を考 す
理想值	184 mK	へれ、到達温度の 明が
理想值+損失	227~243 mK	- つく
実測の到達温度	250 mK	Wisconsin、宇宙研の結果
		も同様に明可

まとめと今後の

まとめ

- ・熱設計によりHe保持時間 36時間を達成
- ・循環結晶析出法による CPA ソルトピルの製作 ステムを構
- ソルトピル容器を設計・製作
- ・ 冷却試験を い、冷却温度を制限している要因について考察

要因のまとめ(部)

	Wisconsin	大 首都大	宇宙研
① 熱流入	1	16	6 mK
②磁場の不均一性	4~6	23~37	9~15 mK
 ③ SUS, Cu による冷却能力の損 	美 4	1	~1.5 mK
④ソルトピル内部の温度勾配	0.3	2.4~4	3 mK
⑤ Eddy current による加熱	13	0.4	~0.3 mK
⑥ CPA 結晶の内部磁化の不定	生		
損失計	22~24	43~59	20~26
理想值	50	184	75
理想值+損失	72~74	227~243	95~101
実測の到達温度	64	250	120

- •最大磁場を2.8Tまで ける
- ・ 消磁開始温度を2Kに下る
- 熱流入をADRー号機で実現していた0.6~0.8 W以下に下る見積もり
 ア_L=T_HB_L/B_H=2 0.1/2.8 = 71mK
 熱流入の
 熱流入の
 熱流入1/3なので16mKの1/3 → ~5mK
 磁場の
 均磁場 2.8 83%=2.324 T → 9~15mK
 SUS,Cuの
 ~1mK
 温度勾配
 熱流入1/3なので4mKの1/3 → ~1mK

➡ 到達温度 86mKが達成できる

50mKを達成するには 初期温度1.5K、磁場4T → 37mK

熱流入の見積もり				
流入熱と熱	熱容量はれれ時間化す	るので、(のため温度	をて
見積も 7:	こ 熟流人と 均した 熟谷重 で 記	「昇		
0.5K以上	V	∕isconsin大	首都大	宇宙研
	支持ワイヤー ; Q1 [µW	0.2	0.12	0.95
	輻射 ; Q2 [µW]		~1.8	~ 0.3
	時間 ■ ;t[s]	700	1000	600
	(Q1+Q2) t [mJ]	0.14	1.92	0.75
	熱容量 [mJ/K]	200	150	200
	温度上昇	0.7 mK	12.8mK	3.5 mK
0.5-0.1K	支持ワイヤー	0.225	0.125	1.03
	輻射		~1.8	~ 0.3
	時間	360	200	360
	(Q1+Q2)t [mJ]	0.08	0.385	0.48
	熱容量 [mJ/K]	200	150	200
	温度上昇	0.4mK	2.6mK	2.4mK
		1 mK	16 mK	6 mK

Eddy current

磁 化を要する 、 部分に渦電流が され、 ユール熱が発 する 渦電流は磁 が導体を く 積が大きいと 速に 加する

$$\dot{Q} = (rac{dB}{dt})^2 rac{\gamma \cdot A \cdot V}{32\rho}$$
 =4/ ,A断 積, V体積, 電気 率

= 3.6 10 ⁻⁸ (4N銅線実	測)Wisconsin大	首都大	宇宙研
ュール熱[mJ]	2.65	0.078	0.68
熱容量 [mJ/K]	200	150	200
温度上昇	13mK	0.5 mK	0.34mK
= 1.6~18 10 ⁻⁸ [cm]	Wisconsin大	首都大	宇宙研
ル熱[mJ]	0.53~6.05 0.0	15~0.175	0.14~1.57

200

2.6~30

150

0.01 ~1.2

200

0.7~7.85

熱容量 [mJ/K]

温度上昇 [mK]

磁場分布の不均一性

B/T=一定の を使い、最大磁場と 均磁場での到達温 度の違いを見積もる(内部磁場は 0.06~0.01 T にふる)

W	/isconsin大	首都大	宇宙研
消磁開始温度	2.1 K	2.5 K	1.86 K
最大磁場	4.2 T	1.36 T	2.5 T
見積り(0.1T)	50 mK	184 mK	74 mK
見積り(0.08T)	40 mK	147 mK	60 mK
見積り(0.06 T)	30 mK	110 mK	45 mK
均磁場	3.76 T	1.13 T	2.09 T
見積り(0.1T)	56 mK	221 mK	89 mK
見積り(0.08T)	45mK	177 mK	71 mK
見積り(0.06 T)	34 mK	133 mK	53 mK
到達温度上昇	4~6 mK	23~37 mK	9~15 mK

磁場分布の不均一性(首都大) B/T=一定の を使い、最大磁場と 均磁場での到達温 度の違いを見積もる(内部磁場は 0.06~0.1 T にふる)

消磁開始温度	2 K
最大磁場	2.8 T
見積り(0.1T)	71 mK
見積り(0.08T)	57 mK
見積り(0.06 T)	43 mK
均磁場	2.324 T
見積り(0.1T)	86 mK
見積り(0.08T)	69 mK
見積り(0.06 T)	52 mK

磁性体

磁性体を冷 として用いるのは、低温で強磁性体となり、 エントロピーが下がるため、低温にて大きな 熱を持 るため冷 として使用することができる

すくのADR

導体マイクロカロリメータが

体ネ ンを予冷用冷 に使用

の断熱消磁冷凍で動作温度60 mKを36時間保持できる設計

EADR

冷凍機

- ³He と⁴Heを分、することで冷却する冷凍機
- ³He と⁴Heの 液は 温度 0.76K 以下で³He- と³He ³He のエンタルピーは で なり、これを さ ることで
 ⁵Apが こり、³He の循環速度を上 ることで大きな冷却能力を
- 磁場による を と けないので実験室で使用される
- ヒーターを用いて温度制御
- ADR
- 冷 に 体を使用しているため い温度安定性
- 体冷 を冷凍機内に 入さ るため冷却能力劣る
- 磁場のがされる

1. TESカロリメータの動作原理

X線マイクロカロリメータ
 TES温度計(Transition Edge Sensor)
 X線 子のエネルギーを
 超伝導 移端を温度計として利用
 素子の温度上昇として検出

温度kT=2keVの 学的に いプラ マ される 6.7keVの 線

エネルギー分解能がよくなると

線の構

構造まで見える

射

MLIの最化

内部磁場の不定性

劣化結晶以外は結晶は 磁性体の理 ルとー する

2 K

FAA(Feric Ammonium Alum) ミョウバン: Fe(NH4)(SO4)2•12H2O ・キュリー mK ・溶 として 酸を使うので り いが

結晶が劣化してしまうような温度で 置しなけれ 、 本的に 化はしない見込み 実 に研究室で使用しているFAAソルトピルは 持 ている

100mK以下にする

- カロリメータを動作さる上でエネルギー分解能をよくするためには100mK以下が必要
- これはエネルギー分解能が温度に 例する ため温度を小さくすることで、分解能をよくで きる

NeXT衛星

- CPAソルトピルの研究を進めることで、容器 構造、結晶の性質について理解をめ、次世 衛星に使用するさいの考となる
- あわよく、首都大で製作したソルトピルを宇宙にあることも目

• Wisconsin では冷凍機が確 しているため、 こでま 結晶 の評価を な た

→ CPAの性能として いくものが れた

- ・宇宙研では首都大と最大磁場、開始温度ながているので consistent 確認するためにも ている
- ・この つの なる冷凍機 で試験を うことで ができた

開始温度の制限

Heタンクとヒートスイッチが熱接をているが、の接がいためヒートスイッチまで冷えていない(Heタンクは2K)
・ポンプの力がりない
Heタンク自体 1.8K まりなので、ポンプを力にする必要がある

CPAを自作する

- これまでFAAが 流 たため、CPAソルトピル製作のためには
- ・容器構造の最化
- ・結晶の評価
- ・最低到達温度を制限する要因の理解

が必要であり、 れ の理解と製作の ウ ウは自作して れるものである

50mKを目 すためには小さな熱損失でも 的であり れ は 地 な開発で改善されるものである

 $|C_{vSUS}(T) = 465T + 0.56T^{-2} [\mu J/g \cdot K]$

