たのしいSTJ

 \sim さやうならあすか犬気圏再突入記念特大号 \sim

たのしいSTJ実行委員会編

2001年3月2日

もくじ

第1章	X 線天文学と分光観測	8	
1.1	宇宙の進化の解明	8	
1.2	X 線分光観測の重要性	8	
1.3	X 線検出器	9	
	1.3.1 代表的な X 線検出器	9	
1.4	次世代の X 線検出器	10	
	1.4.1 次世代のX線検出器に要求される性能	10	
	1.4.2 次世代検出器の候補:TESとSTJ	11	
1.5	本研究の目的	13	
第2章	超伝導トンネル接合検出器の原理	14	
2.1	STJの構造	14	
2.2	トンネル障壁の特性	15	
	2.2.1 電流 – 電圧(I-V)特性	15	
	2.2.2 ジョセフソン電流	17	
	2.2.3 トンネル電流	18	
2.3	放射線検出の素過程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18	
	2.3.1 エネルギー緩和過程	18	
	2.3.2 Tunneling Process	18	
	2.3.3 エネルギー分解能の理論的限界	19	
2.4	研究の現状	20	
第3章	直列接合型超伝導トンネル接合検出器	22	
3.1	構造と検出原理	22	
3.2	直列接合素子の特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22	
	3.2.1 エネルギー帯域,検出効率	22	
	3.2.2 出力信号,スペクトル	23	
	3.2.3 実効静電容量	23	
	3.2.4 位置分解能	24	
第4章	実験装置の構成と開発 26		
4.1	直列接合型 STJ 検出器:80NbS1	26	
4.2	³ He クライオスタット	26	
	4.2.1 構造	26	

4.2.2264.2.3284.3プリアンプ 28回路 4.3.1284.3.229294.3.3294.44.4.1294.4.2294.4.329実験1: α 粒子コリメータ0.2 mm $\phi \times 3$ 32 第5章 5.1325.2実験 3232 5.3信号波形からのデータ抽出..... 5.3.132実験 2: α 粒子コリメータ 0.2 mm $\phi \times$ 9 第6章 34 6.1346.2実験 34 6.3解析 346.3.134 6.3.237 6.3.3 46 6.3.4 536.3.564 実験3: α 粒子コリメータ0.1 mm $\phi \times 9$ 69 第7章 7.169 7.2実験 69 7.3解析 69 7.3.169 7.3.2717.3.3797.3.486 実験 4: α 粒子全面照射 97 第8章 セットアップ 8.1 97 実験 8.2 97解析 8.3 97 信号波形からのデータ抽出..... 8.3.197 信号到達時間差...... 8.3.2 99 8.3.3 99

2

8.3.4 ライズタイム 99	9
けA信号波形からのデーター抽出 10:	3
A.1 信号到達時刻,ライズタイム,パルスハイト	3
A.1.1 phPLAYv2.sh \ldots	3
A.1.2 phPLAYv2.com $\dots \dots \dots$	4
A.2 面積	δ
A.2.1 mensekiPLAYv4.sh	δ
A.2.2 mensekiPLAYv4.com	δ
$A.3$ さらにおまけ \ldots \ldots \ldots \ldots \ldots \ldots \ldots $10'$	7
A.3.1 mkdat.sh $\ldots \ldots 10'$	7
け B 研究の動機 109	9

図一覧

1.1	TES のモデル図	12
1.2	STJ のモデル図	13
0.1		15
2.1		15
2.2		10
2.3	STJ の $I = V$ 特性の手導体セナルによる説明	17
2.4	2 つの超伝導体にのりるトノネリンクノロセス	19
3.1	直列接合素子の等価回路・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
3.2	位置検出実験	25
4.1	直列接合素子 80NbS1	27
4.2	直列接合素子 80NbS1 の一部	27
4.3	てんまに搭載されたチャージアンプの回路図	30
4.4	I – V 特性取得用アンプ回路図	31
5.1	STJ 検出器を ³ He ステージに設置	33
6.1	線源コリメータ固定金具のパーツ	35
6.2	STJ 検出器を ³ He ステージに設置	35
6.3	検出器とコリメータホールの位置関係	35
6.4	検出器,コリメータ,放射線源の位置関係	35
6.5	信号波形からのデータ抽出....................................	36
6.6	信号到達時間差のスペクトル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
6.7	信号到達時間差の相関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
6.8	信号到達時間差の物理的意味....................................	42
6.9	コリメータホールと分布の対応	42
6.10	X 軸方向の信号到達時間差のホール別スペクトル	43
6.11	Y 軸方向の信号到達時間差のホール別スペクトル	44
6.12	コリメータ間隔と信号到達時間差の相関	45
6.13	ライズタイムスペクトル	47
6.14	コリメーターホール別ライズタイムスペクトル – 素子 A	48
6.15	コリメーターホール別ライズタイムスペクトル – 素子 B	49
6.16	コリメーターホール別ライズタイムスペクトル – 素子 C	50
6.17	コリメーターホール別ライズタイムスペクトル – 素子 D	51

6.18	ライズタイムの放射線入射位置依存性.........................	52
6.19	パルスハイトスペクトル	54
6.20	コリメーターホール別パルスハイトスペクトル – 素子 A	55
6.21	コリメーターホール別パルスハイトスペクトル – 素子 B	56
6.22	コリメーターホール別パルスハイトスペクトル – 素子 C	57
6.23	コリメーターホール別パルスハイトスペクトル – 素子 D	58
6.24	パルスハイトの放射線入射位置依存性.......................	59
6.25	コリメーターホール別パルスハイト時間変動 – 素子 A.........	60
6.26	コリメーターホール別パルスハイト時間変動 – 素子 В.........	61
6.27	コリメーターホール別パルスハイト時間変動 – 素子 С.........	62
6.28	コリメーターホール別パルスハイト時間変動 – 素子 D.........	63
6.29	コリメーターホール別平均波形 – 素子 А	65
6.30	コリメーターホール別平均波形 – 素子 B	66
6.31	コリメーターホール別平均波形 – 素子 C	67
6.32	コリメーターホール 別平均波形 – 素子 D	68
71	検出器とコリメータホールの位置関係	70
1.1 7.9		70
1.4 7.9		70
7.0		70
7.4 7.5		74
7.5		74
7.0		76
7.8		77
7.0		78
7.10		78
7.10	ライズタイムスペクトル	80
7.12	フィスティムス、ティル $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $	81
7.13	コリメーターホール別ライズタイムスペクトル – 素子 B · · · · · · · · · · · · · · · · · ·	82
7.14	コリメーターホール別ライズタイムスペクトル – 素子 C	83
7.15	コリメーターホール別ライズタイムスペクトル – 素子 D \ldots	84
7.16	時間分解能	85
7.17	$\mathcal{N}\mathcal{W}$	87
7.18	コリメーターホール別パルスハイトスペクトル – 素子 A	88
7.19	コリメーターホール別パルスハイトスペクトル – 素子 B	89
7.20	コリメーターホール別パルスハイトスペクトル – 素子 C	90
7.21	コリメーターホール別パルスハイトスペクトル – 素子 D	91
7.22	コリメーターホール別パルスハイト時間変動 – 素子 A.........	92
7.23	コリメーターホール別パルスハイト時間変動 – 素子 B.........	93
7.24	コリメーターホール別パルスハイト時間変動 – 素子C.........	94
7.25	コリメーターホール別パルスハイト時間変動 – 素子 D.........	95
7.26	エネルギー分解能....................................	96

8.1	検出器とコリメータホールの位置関係......................	98
8.2	検出器,コリメータ,放射線源の位置関係	98
8.3	信号波形からのデータ抽出..............................	98
8.4	信号到達時間差の相関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
8.5	パルスハイトの入射位置依存性	101
8.6	ライズタイムの入射位置依存性	102
B.1	研究の動機・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109

表一覧

1.1	GISとSISの性能	10
2.1	代表的な超伝導体...................................	16
4.1	クライオスタット内の温度計.............................	28
6.1	X 軸方向の信号到達時間差のガウシアンフィットの結果	38
6.2	Y 軸方向の信号到達時間差のガウシアンフィットの結果	39
6.3	X 軸方向の位置分解能	39
6.4	Y 軸方向の位置分解能	40
7.1	X 軸方向の信号到達時間差のガウシアンフィットの結果	72
7.2	Y 軸方向の信号到達時間差のガウシアンフィットの結果	72
7.3	X 軸方向の位置分解能	73
7.4	Y 軸方向の位置分解能	73

第1章 X線天文学と分光観測

1.1 宇宙の進化の解明

「astrophysics」は様々な天体の起源や進化を物理法則に則って明らかにする天文学,物 理学の一分野である.20世紀に入って人類は,宇宙が決して定常的なものではなく,150 億年前の大爆発(ビックバン)によって誕生し,その後進化を続け,そして現在の複雑な 階層構造を持った宇宙に至っていることを知った.それでは宇宙誕生の後,いつ頃,どの ようにして星が生まれ,銀河が形成され,銀河団のような巨大な構造が作られたのだろう か?また,宇宙は将来どのように進化していくのだろうか?

恒星は人の一生と同じようにライフサイクルを持っている.すなわち,星間物質の重力 収縮によって原始星が生まれ,原始星がさらに重力収縮を続けることで中心部に核融合反 応が起こり,主系列星となる.核融合反応のための燃料を使い果たすと,あるものは周辺 部が惑星状星雲として星間空間に還元されて白色矮星が残り,あるものは超新星爆発を起 こして自分自身を吹き飛ばし,中性子星やブラックホールを残す.

銀河とは恒星の集まりであり,無数の恒星がそれぞれ独立に,あるいは影響しあってサ イクルを繰り返している.長期的に見ると,恒星によって作られた重元素を含んだ星間物 質が,銀河風という形で銀河の外に放出される.銀河はさらに銀河団という集団を形成し ている.銀河団の重力ポテンシャルは実は電磁波では見ることのできないダークマターに よって作られており,銀河はそのポテンシャルに束縛される.また,銀河団内の空間は銀 河団の重力ポテンシャルに束縛された,1億度程度の高温ガスで満たされており,その総 質量は個々の銀河の総質量よりも大きい.このような高温ガスにも重元素が存在しており, 恒星内で作られ,銀河風として放出された星間物質が大きく寄与している.

ビックバン直後の宇宙は極めて一様であり,現在の宇宙に見られるような構造は,その 後の進化の過程で様々な天体が互いに密接に関係しながら形作られたものである.した がって,宇宙の進化を理解するためには,各種の天体の進化と互いの関連を観測的に見極 めていくことが重要である.

1.2 X線分光観測の重要性

X線は高エネルギー電子によるシンクロトロン放射や逆コンプトン散乱によって,ある いは高温物質からの熱制動放射や黒体放射によって生み出される.したがって,宇宙にお ける高エネルギー現象をとらえるのに最も適した電磁波である.また,エネルギー100 eV から10 keV の間には,炭素,窒素,酸素,ネオン,マグネシウム,シリコン,イオウ,ア ルゴン,カルシウム,鉄等の,宇宙に存在する主要な重元素のK輝線,K吸収端が存在 することから,これらの重元素の量や物理状態を知る上でも,X線による観測が有効であ る.さらに,これらの輝線のエネルギーシフトや幅は,これらの元素を含むガスの運動状態を知る上で重要な情報である.このようなX線の性質を踏まえると,X線による分光観測が宇宙の進化を解明する上での鍵となる.

1.3 X線検出器

X線天文学の進歩は,観測装置であるX線検出器の進歩なくしてはありえない.X線 検出器に期待される性能は,他の多くの検出器と同様,高い感度を持ち,広いエネルギー 帯をカバーし,そしてX線フォトンの持つ情報(エネルギー,位置,時刻,偏光の有無な ど)を精度良く抽出できるということである.もちろん,研究したい物理によって得るべ き情報の種類や精度は異なるが,逆にいえばその情報によって知り得る物理も制限される. 単純に言ってあらゆる情報を高い精度で観測できるにこしたことはないが,中でも先に述 べたような理由から高精度の分光観測を行う意義は大きい.また,宇宙からのX線は地球 大気に吸収されてしまうため,X線検出器は飛翔体 – 人工衛星に搭載することが前提とな る.それゆえ検出器自体の性能に加えて,宇宙空間での耐久性や,軽量化,様々な意味で の簡便性なども求められる.

1.3.1 代表的な X 線検出器

代表的な X 線検出器として,1993年打ち上げられたわが国第四の X 線天文衛星「あすか」 に搭載されている 2 種類の検出器,撮像型ガス蛍光比例計数管(Gas Imaging Spectrometer : GIS)と X 線 CCD カメラ(Solid-state Imaging Spectrometer : SIS)について簡単に まとめる.

撮像型ガス蛍光比例計数管(GIS)

GISは,Xe(+He4%)ガスが封印されたガスセルと位置検出型光電子増倍管から構成されている.ガスセルにX線フォトンが入射するとXeの光電吸収によってフォトンのエネルギーに比例した数の電子が生成される.ガスセルには高圧がかけられており,電場で加速された電子はXe原子を励起して蛍光紫外線を発生させる.その紫外線を位置検出型の光電子増倍管で受けて電荷信号を作り出す.

また一般に,比例計数管は軽量で大面積化が可能であるため,過去に多くのX線天文衛 星に搭載されたという実績を持つ.

X線CCDカメラ(SIS)

半導体検出器は,p-n接合の逆バイアスをかけることで生じた電荷キャリアの存在しない領域(空乏層)にX線が入射し,その光電効果で生じた電子と正孔を電気信号として取り出す検出器で,CCDは小さい半導体検出器を多数敷き詰めた構造をしている.

SIS の最大の特徴は, X 線の吸収材として Si を用いることによって GIS に比べ 5 倍以上の一次電子を発生できるため,エネルギー分解能が優れていることである.

	GIS	SIS
エネルギー帯域	$0.7{\sim}15~{\rm keV}$	$0.5{\sim}10~{\rm keV}$
エネルギー分解能	$8~\%$ ($@5.9~{ m keV}$)	$2~\%$ ($@5.9~{ m keV}$)
位置分解能	$0.5~\mathrm{mm}$ ($@6~\mathrm{keV}$, FWHM)	$27~\mu{ m m}$
時間分解能	最高 60 µsec	4 sec (1chip のみ使用)
		最高 16 msec(位置情報なし)
視野	約 50 分角	22 分角 (4chip 合計)

Tab. 1.1: GISとSISの性能

ー般に CCD の位置分解能は 1 つの画素(ピクセル)の大きさ(10~20 µm)で決まり, ピクセル数が数十万,数百万にも及ぶことから個々のピクセルに増幅器をつけることは不 可能で,すべてのピクセルを同一の増幅器で読み出す.よって,CCD の信号読み出しは 一般に遅く,データー量も膨大になる.また,エネルギー分解能はすでに理論的限界にほ ぼ到達しており(~100 eV@6 keV)今後大幅な向上は望めない.

Tab. 1.1 に GIS と SIS の基本的な性能をまとめる.

1.4 次世代のX線検出器

1.4.1 次世代の X 線検出器に要求される性能

次世代の X 線検出器に必要な性能,とくにエネルギー分解能について考える.精密な プラズマ診断が行えるように,数百 kms⁻¹のガスの運動によって起きるドップラーシフ トや各輝線の微細構造を十分に分離できる分解能が必要である.微細構造が分離できない と,プラズマの状態によって輝線構造の中心エネルギーが変わってしまうため,統計に関 わらずエネルギーの決定精度が制限されてしまう.したがって微細構造の分離は不可欠で ある.

宇宙に最も多く存在する元素の1つで,X線分光で最も興味のある鉄のK α 線について 考えてみる.ヘリウム様に電離された鉄のK α 線のエネルギーは6.7 keVであるが,この 鉄イオンが一階励起された状態はLS結合によって4つの状態に分離する.これらは,双 極子遷移によって6698 eVの共鳴X線を放射し,プラズマの物理状態によって6637 eVと6673 eVの輝線として観測される.さらにこれらの輝線の近くにはリチウム様イオンや ベリリウム様イオンから出る衛星線が現れる.したがってこれらの微細構造を分離するた めには, $\Delta E < 10 \text{ eV}$ のエネルギー分解能が必要である.

また,100 kms⁻¹の運動によって起こるドップラーシフトは,6.7 keV の鉄輝線に対し て 2.2 eV である.これは運動状態によって,エネルギーのシフトもしくは輝線の広がり として検出される.したがって,天体の運動を正確に知るためには,エネルギー分解能~ 数 eV が必要となる. 1.4.2 次世代検出器の候補: TES と STJ

エネルギー分解能 ~ 数 eV を実現する次世代の X 線検出器の有力な候補として,現在 さかんに研究,開発が進められている,超伝導転移端検出器(TES)と超伝導トンネル接 合検出器(STJ)を紹介する.

超伝導転移端検出器(Transition Edge Sensor: TES)

超伝導転移端検出器(TES)は,入射X線を吸収する吸収体とそれと熱的に結合した 超伝導体薄膜で構成され,吸収体において発生した僅かな熱量を超伝導体薄膜の抵抗変化 として観測し,入射X線の与えたエネルギーを測定するもので,カロリメータの一種であ る.単一の超伝導体薄膜で吸収体を兼ねる場合もある.

一般にカロリメータは,吸収体にX線が入射したとき,X線の持っていたエネルギーが 熱に変換されることを利用して,吸収体の温度変化から1個1個のX線の持つエネルギー を測定するという検出器であり,エネルギー分解能はフォノンのランダム運動に起因し,

 $\Delta E = \xi \sqrt{k_{\rm B} T^2 C} \tag{1.1}$

で与えられる. ξ は吸収体に取り付けられた温度センサーの感度を表す定数, C は吸収体の熱容量, k_B はボルツマン定数, T は吸収体の温度であり, エネルギー分解能が入射 X 線のエネルギーによらないことが一つの特徴となっている. デバイ則から絶対零度の近傍では物質の熱容量は温度の3乗に比例するため, カロリメータのエネルギー分解能は極低温において著しく向上する.

カロリメーターの温度センサーに,超伝導体薄膜の常伝導 – 超伝導転移端の急峻な抵抗 変化を利用したものが超伝導転移端検出器であり,従来のカロリメータの ξ が 1~2 である のに対して,TES では超伝導体の素材の選択や動作温度によっては ξ が 0.1 以下となり, エネルギー分解能が飛躍的に向上する.

超伝導トンネル接合検出器 (Superconducting Tunnel Junction : STJ)

エネルギー分解能 ~ 数 eV を実現するもう一つの検出器が本研究で解説する超伝導トン ネル接合検出器(STJ)である.

-つの STJ 素子は超伝導体 – 絶縁体 – 超伝導体の順に積層された薄膜でできており, ジョセフソン素子の一種である.両側の超伝導体層が有感領域である.この超伝導体に X 線が入射すると光電吸収により電子が生成され,その電子をきっかけにクーパー対(超伝 導電子対)が破壊されて多数の準粒子(電子)が励起される.この準粒子のうち絶縁層を トンネリングしたものを信号として検出するのが STJによる X 線検出の基本原理である.

その際金属超伝導体のエネルギーギャップが ~ 数 meV と半導体のそれよりも 1/1000 程度であることから,電荷キャリアとなる準粒子の数が膨大になる.これが優れたエネル ギー分解能となる理由である.

Fig. 1.1: TES のモデル図

TESとSTJ の特性

X線検出器に必要とされるいくつかの性能,動作条件について,TESとSTJの比較を する.

- エネルギー分解能 X線(5.9 keV)に対して,STJは理論限界が4 eV とされ,実測値と して12 eV が報告されているのに対して,TES は理論的限界2 eV とされ,実測値 4.5 eV が報告されており,TES のほうがエネルギー分解能が優れているといえる.
- 冷却 TES,STJともに極低温で運用しなければならず,何らかの冷却器が必要になる.し かし STJ は約1K以下であれば十分であるのに対して,TESは0.1K程度まで冷 却しなければならず,さらに動作温度を超伝導転移端にするために~0.1mK程度の 精度で温度を制御しなければならない.
- 時間分解能 TES の時間分解能は ~ msec であるのに対して, STJ は入射 X 線が準粒子の エネルギーに変換されるまでに数 nsec 程度しか要しないため信号の立ち上がりが速 く係数率が高い.時間分解能は ~ μsec となる.
- 位置分解能 検出器に位置分解能(撮像性能)を持たせるために一般的な方法は素子を多数敷き詰めるアレイ化であるが,TES,STJとも素子それぞれに読み出し配線を施すような単純なアレイ化は,素子への熱流入を考えると不可能である.そこで,TESでは交流バイアスによる2素子同時読み出しなどの研究がなされ,STJでは6×6の素子を縦と横とに並列に接続して読み出し配線を12本にした検出器が実用化されている.また,STJを直列に接続して大面積化し位置分解能を持たせる研究がなされている.

Fig. 1.2: STJ のモデル図

1.5 本研究の目的

本研究では,天体観測のための放射線検出器に撮像性能は必須であると考え,直列接合型超伝導トンネル接合検出器に着目した.そこで,冷却系,信号読み出し系を含めた,放射線の入射位置を測定するシステムを構築し,直列接合型超伝導トンネル接合検出器の撮像性能(位置分解能)を評価することを目的とした.

第2章 超伝導トンネル接合検出器の原理

この章では超伝導トンネル接合(Superconducting Tunneling Junction: STJ)検出器の基本特性・動作原理などについて簡単に述べる.

超伝導状態にある金属では、2つの電子が相互作用によって対になり互いに近距離を保って金属内を移動している.この電子対を、クーパー対(Cooper pair)という.そして、このクーパー対が何らかの作用により破壊され、単独状態になった電子を準粒子(quasiparticle)という.

X線フォトンが STJの接合素子に入射すると,光電吸収によって電子が作り出される. 生成された電子はその緩和過程で一旦フォノンにエネルギーが変換されることもあるが,約1meVというわずかなエネルギーで電子対(クーパー対)を破壊できることから,生成されたフォノンも準粒子(電子)の励起に効果的に寄与する.こうして大量に作り出された準粒子はトンネル障壁を通過し,接合の反対側の金属で信号電荷として検出される.

超伝導状態を保つために,STJはその素材の転移温度 T_c 以下に冷却するわけであるが,熱励起電子によるトンネル電流を抑えるなどの目的により,素子はなるべく低温($T/T_c < 0.1$)で使用するのが望ましい.電位差ゼロの状態で接合面を流れるクーパー対による電流(ジョセフソン電流)は素子に磁場を印加することによって抑制し,放射線の入射によってクーパー対が破壊されて励起された準粒子(すなわちその数は入射放射線のエネルギーなどの情報を持つ)のみが接合を通過するようにする.

2.1 STJの構造

Fig. 2.1 に STJ の模式図を示す.STJ はサファイアなどの基板上に構成され,厚さ数 100 nm,一辺の長さ100 µm 程度の超伝導体のフィルムの間に厚さ1~2 nm という絶縁層 をはさんだ構造をしている.基本的にはジョセフソン接合とまったく同じものである.た いていの場合において検出効率は高い方が好ましいので,STJ 素子も吸収層(超伝導層)の厚みや面積はなるべく大きくしたい.しかしあまり厚い層は均一に作ることが困難であ り,準粒子のトンネリングレートが減少して出力パルスが小さくなることが問題となる.また,面積が大きすぎると素子の静電容量が大きくなってノイズの原因となる.

超伝導体としては Nb の他に Sn, Al, あるいは Ta などが用いられる. Tab. 2.1 に代表的な超伝導体を挙げる. X線の高精度分光の立場からは原子番号が大きく, かつエネルギーギャップ($E_g = 2\Delta$)が小さい材料が望ましいが, E_g が小さいとそのぶん低温で動作させる必要があるので扱いが簡便でなくなる.本論分では,ジョセフソン素子としても実績があり,世界的にもひろく用いられている Nb系の素子を用いた. Nb系の素子は転移温度 T_c が比較的高いので簡易な冷却装置で済むこと,また Sn などと比べると熱サイクルに強いといった利点がある.なお,本論文で使用した素子はすべて新日鐵先端技術研究所

側面図

Fig. 2.1: Nb 系 STJ 素子の一例

で倉門氏(現大阪電気通信大学教授)により製作されたものである.

2.2 トンネル障壁の特性

超伝導体には電場は侵入できないので,X線の入射によって生成された電子を電場に よって強制的に集めるようなことはできない.そこで,2つの超伝導体に適当なバイアス Vb をかけることで Fermi レベルに勾配をつけ,一旦障壁を通過した電子を元に戻りにく くすることによって電子の収集効率を上げることができる.これが,そもそもトンネル接 合を用いている理由である.

2.2.1 電流 - 電圧(I-V)特性

Nb 系素子の電流 – 電圧(I – V)特性¹の例を Fig. 2.2 に示す.I – V 特性の図からは, 最大ジョセフソン電流 I_{max} ,エネルギーギャップ E_{g} (= 2 Δ), Dynamic resistance R_{d} , Normal resistance R_{n} などの素子の性能をあらわすパラメータを得ることができる.

 R_{d} (Fig. 2.2 の右図参照)は原点における曲線の傾き dV/dI で,これは素子のリーク 電流の大きさの目安となる.リークが少ない素子ではおおよそ 100kΩ以上の値となる.

 $^{^{1}}$ トンネル電流のバイアス電圧 $V_{\rm b}$ 依存性を電流 – 電圧(I – V)特性という.

	原子番号	転移温度 $T_c[K]$	エネルギーギャップ $E_g[ext{meV}]$	臨界磁場 H_c [Gauss]
Al	13	1.196	0.34	105
Nb	41	9.23	3.1	1980
Sn	50	3.722	1.1	309
Ta	73	4.39	1.4	830

Tab. 2.1: 代表的な超伝導体

 Fig. 2.2: Nb 系 STJ 素子の I – V 特性の模式図 ··· 右図は左図の原点付近を拡大したもの .

 (a) は電位差ゼロで流れるジョセフソン電流 , (b) は磁場を印加してジョセフソン電流を抑制した場合の I – V 特性 .

バイアス電圧 $V_{\rm b} \gg 2\Delta/e$ のところで現れる $R_{\rm n}$ (Fig. 2.2 の左図参照)は,エネルギー ギャップ 2Δ を飛び越えた準粒子が素子を通過する時間 $\tau_{\rm t}$ (tunnel time), すなわち準粒子 が単位時間あたりに障壁を通過する確率 γ (transmission probability)の逆数に比例する.

$$\tau_{\rm t} = \gamma^{-1} = e^2 N_0 R_{\rm n} \lambda A \tag{2.1}$$

 N_0 は Fermi エネルギーにおける状態密度, λ は準粒子が通過するフィルムの厚さ, A は 接合の面積である. Nb の場合, $N_0 = 31.7 \times 10^{21}$ [states/eV/cm³] であるので, 値を代入 すると,

$$\tau_{\rm t}[\rm{nsec}] = 5.07 R_{\rm n}[\Omega] \lambda[\mu m] A[\mu m^2]$$
(2.2)

であり,通常 $\tau_{\rm t} \sim 1000 [{\rm nsec}]$ 程度の値となる.

STJの電流 – 電圧特性は半導体モデルを用いると Fig. 2.3 のように表すことができる. Fig. 2.3 は 2 枚の超伝導フィルムの間にトンネル障壁がはさまっている状態の図で,電子の状態密度をグレーで,holeの状態密度を白で表し,図中の矢印は電子の動き(トンネル電流)を表す.Fermi エネルギー E_F の上にある電子の状態密度と,Fermi エネルギー E_F の下にあるホールの状態密度は熱的に励起された準粒子に対応し,図の左はバイアス電圧

Fig. 2.3: STJのI-V 特性の半導体モデルによる説明

が $0 < V_{\rm b} < 2\Delta/e$ の場合,右はバイアス電圧が $V_{\rm b} \gg 2\Delta/e$ の場合である.バイアス電圧 により Fermi レベルに $eV_{\rm b}$ のポテンシャル差が生じ, $V_{\rm b} \gg 2\Delta/e$ の場合では,熱的に励 起された準粒子による電流のみでなく,Normal resistance $R_{\rm n}$ に対応する電流が生じるこ とが理解できる.

この図から理想的な STJ 素子において, $0 < V < 2\Delta/e$ の領域(サブギャップ領域)では熱的に励起された準粒子によるトンネル電流をのぞけば,放射線が入射して準粒子がトンネリングしない限り,トンネル電流は流れないことがわかる.これが X 線検出器として STJ が必要とされる本質的な理由である.つまり STJ 素子を検出器として動作させるには両極間のバイアスをサブギャップ領域に設定し,放射線の入射によって励起された準粒子のみがトンネル障壁を通過できるようにする必要がある.したがって,サブギャップ領域の存在は半導体検出器における空乏層と同じ役割をするものとしてとらえることができる.

2.2.2 ジョセフソン電流

ジョセフソン素子には電位差ゼロでも絶縁層に垂直に ~100 μA の電流が流れる.これ をジョセフソン電流と言い,2つの超伝導体の電子対の波動関数の重なりのために電子が トンネリングすることによって生じる現象である.STJ素子を放射線検出器として用いる 場合,ジョセフソン電流はノイズの原因となるので,接合面に平行に数十~数百 Gauss (ただし臨界磁場以下)の磁場をかけてこれを抑制して用いる. 2.2.3 トンネル電流

磁場を印加してジョセフソン電流を抑制しても障壁を通過する電流が主に次の2つ存在 し,ノイズの原因となる.

- 1. 熱的に励起された準粒子による熱電流 $I_{
 m th}$ ($\propto T^{1/2} \exp(-\Delta/{
 m k}T)$)
- 2. 障壁の欠陥などによるリーク電流 I_1 ($\propto \exp(V_b)$)

現在 Nb 系の素子を用いた場合,だいたい1 K 以下にまで冷却すると熱励起電子による トンネル電流は無視できるようになり,かわりに障壁の欠陥によるリーク電流が支配的と なる.

2.3 放射線検出の素過程

2.3.1 エネルギー緩和過程

STJにおける X 線フォトンのエネルギーの主要な緩和過程を以下に示す. まず X 線が入射することによって,比較的少数の電子が高いエネルギーに励起される.

- (1) Fermi エネルギー $E_{\rm F}$ よりも $\sim \sqrt{E_{\rm D}E_{\rm F}} \sim$ 数百 meV 以上高いエネルギーに励起さ れた電子は,主に他の電子を励起して余剰エネルギーを失っていく.
- (2) それ以下のエネルギーとなった励起電子は, 主にフォノンを放出してエネルギーを 失っていく.
- (3)エネルギーΩが2Δよりも大きいフォノンは,クーパー対を破壊して電子を励起す ることができる.
- (4) エネルギー E が 3Δ よりも大きい電子は , $\Omega \ge 2\Delta$ のフォノンを放出することができる .

ここで $E_{\rm F}$ は Fermi エネルギー, $E_{\rm D}$ は Debye エネルギーである. 2 Δ はクーパー対の結合エネルギーで,エネルギーギャップに相当する($E_{\rm g} = 2\Delta$). Δ はバンドギャップと呼ばれる.エネルギー Ω が 2 Δ よりも小さくなったフォノンはもはや電子を励起することはできず,周囲に散逸して失われる.

フォノンの持ちうる最大エネルギーは *E*_D 程度で,通常数 10 meV 以下である.超伝導体のエネルギーギャップが数 meV と小さいために,フォノンによる準粒子生成(3)が可能であり,フォノンによる準粒子生成(3)と準粒子によるフォノン生成(4)が何度も繰り返して行われることが STJ の大きな特徴である.

2.3.2 Tunneling Process

さて,入射X線は2枚の超伝導体のどちらにおいても吸収され得るが,電子のtunneling process は次のように異なる(Fig. 2.4)

Fig. 2.4: 2 つの超伝導体におけるトンネリングプロセス

- (a) X線がポテンシャルの高い側のフィルムで吸収された場合,クーパー対を破壊して ギャップ上に2個の電子(準粒子)を作り出し,それが障壁を抜けて電荷信号とし て検出される.
- (b) X線がポテンシャルの低い側のフィルムで吸収された場合,一旦準粒子が作られるのは同じだが,2つのフィルムの間で波動関数が重なり合っていることから,ポテンシャルの高い側のクーパー対の電子が,低い側に通り抜ける.

どちらの場合でもポテンシャルの高い側から低い側へ電荷が移動するので,どちらの超伝 導層で X線が吸収されても同じ極性の信号が検出されるという,一見奇妙なことが起こる.

しかし,2つの超伝導体の両層の厚さや,基盤と接触しているかどうかなどの構造の違いから準粒子,フォノンの拡散や再結合などのタイムスケールがことなるため,X線がどちらの超伝導層で吸収されたかによって出力信号のパルスハイト,立ち上がり時間が異なる.STJで得られたエネルギースペクトルを見ると,同じ入射エネルギーに対応するピークが2つ得られることがある.

2.3.3 エネルギー分解能の理論的限界

物質がエネルギー *E*₀の準粒子を光電吸収することによって生成される電子の数は次のように表される.

$$N_0 = \frac{E_0}{\epsilon} \tag{2.3}$$

 ϵ は1つの電子を生成するのに必要なエネルギー(平均電離エネルギー)である. N_0 はFano 因子 Fを用いて $< N_0 >^2 = FN_0$ なる関係があるので,エネルギー分解能はFWHM[eV]で,

$$R_0 = 2.355\sqrt{F\epsilon E_0} \tag{2.4}$$

となる.

STJで吸収体として超伝導状態の Nbを用いた場合, $\epsilon \ge F$ の理論値はそれぞれ 2.7 meV ≥ 0.22 であり, したがって, R_0 の理論的限界は約 4 eV となる.

2.4 研究の現状

式 (2.4)から,優れたエネルギー分解能の現実という面で捉えると,必要な超伝導としては Δ の小さい物質をとれば良いことになる.一方,BCS 超伝導体の臨界温度 T_c とエネルギーギャップの間には,

 $2\Delta = 3.52k_{\rm B}T_{\rm c}$

なる関係があり,小さいエネルギーギャップを持つ超伝導体は低い臨界温度を持つことを 意味する.また,STJの動作温度は熱的に励起された準粒子による熱電流を抑えるため, 転移温度 T_cの1/10以下にする必要がある.それらを考慮して実際にSTJ素子として用 いられている接合の種類は以下のとおりである.

\mathbf{Sn}

Sn 接合(Sn/SnO_X/Sn)は抵抗加熱式真空蒸着装置で比較的容易に特性のよい接合が得られるため,初期には盛んに用いられた.1969年にカナダのブリティッシュコロンビア大学のチームによってはじめて STJ で放射線検出がなされたのもこの接合である.5.9 keVのX線に対しては48 eV という優れたエネルギー分解能が得られており,Sn 膜の質の向上などによりこの値は十分向上すると考えられる.しかし Sn 接合は熱サイクルに弱く,窒素温度で保存しなければならないなどの欠点があるため,最近では Sn 接合の研究はあまり行われていないのが現状である.

Al

Al 接合 (Al/AlO_X/Al)は, Al のエネルギーギャップが 0.34 meV と小さいため Sn 接合よりもエネルギー分解能の限界は低い.実際, Al 接合ではドイツのミューヘン工科大学のチームが STJ 素子としては最高の 12 eV という分解能を実現している.しかしエネルギーギャップが小さい反面,式 (2.5) により転移温度が低いため, Al 接合を動作させるには 3 He = 4 He 希釈冷凍機や断熱消磁冷却器で 0.1 K 以下に冷却する必要があり,また X線に対する検出効率も低いなど欠点もある.

\mathbf{Nb}

Nb 系接合はジョセフソンコンピュータあるいは SQUID 用素子として最も実績がある 接合である.放射線検出器としての研究の開始時にはまだ十分な特性をもっていなかった のだが、その後リーク電流の低減や励起準粒子散逸の抑制の研究がなされ、X 線が十分検 出できるようになった.エネルギー分解能の最高記録は Nb/Al/AlO_X/Al/Nb ²を接合に 用いて 5.9 keV の X 線に対して 66eV である.また Nb 系接合は転移温度が高いために冷 却も比較的簡単な ³He クライオスタットで可能である.

(2.5)

 $^{^{2}}$ Al 層による準粒子トラップ効果: Nb と AlO_x の間にエネルギーギャップの小さい Al をはさむことで, Nb で生成された電子を Al 層でトラップして効率良くトンネル障壁を通過させる.

 \mathbf{Ta}

Ta の転移温度は 4.48 K, エネルギーギャップは 1.4 meV で ³He クライオスタットでの 冷却が可能である.また Ta の原子番号は 73 と比較的大きく密度も高いため検出効率が上 がる.準粒子の lifetime も長い.堅くて機械的な力にも強く Ta 接合は最近研究され始め ている.5.9 keV の X 線に対してのエネルギー分解能はアメリカイエール大学のチームに よって Ta/Al/AlO_X/Al/Ta 接合で 82 eV が得られている.

第3章 直列接合型超伝導トンネル接合検出器

STJはエネルギー分解能の非常に優れたX線検出器として十分な能力を持っているが, 同時に位置検出もできれば天文学への応用範囲はさらに広がる.しかしながらSTJは,

- 素子自体が持つ浮遊容量の増大
- 層の不均一化

といった技術的な問題により,高いエネルギー分解能を維持するためにはせいぜい 0.2 mm 角程度までしかサイズを大きくできないという問題があった.一つの基板上に多数の接合 を並列に配列するという方法も考えられるが,一つ一つの素子の特性をそろえることが困 難であるという技術的な問題がある.そこで大阪電気通信大学の倉門氏らの考察による, 直列接合を用いた大面積化の方法が提唱された.

3.1 構造と検出原理

直列接合型超伝導トンネル接合検出器(Series-Connected STJs)は基盤となるサファ イアの一部に,前章でみたSTJ素子(単接合素子¹)を数個から数十個文字通り直列につ なげて並べたものである.

X線の検出は,単接合のように素子の超伝導体に直接入射した X線を検出するのではなく,X線を裏側(STJの反対)から基板に入射させ,基板に生じたフォノン(格子振動)が STJ に達して超伝導体の準粒子を励起し,作り出された信号を読むというのが検出原理である.

3.2 直列接合素子の特徴

単接合素子と比べた場合の直列接合素子の特徴を以下に述べる.

3.2.1 エネルギー帯域,検出効率

直列接合型 STJ 検出器で X 線を検出する場合, X 線はサファイア基板側から入射させる. つまり置かれている基板そのものを放射線の吸収体として使うことにより, エネルギーの 高い X 線(~10 keV)に感度を伸ばすことができるという利点がある.一方サファイアは 不感層(dead layer)が数 nm と小さく,低エネルギー側(~1 keV)の検出にもよい.

¹直列接合素子に対して,超伝導体 / 絶縁体 / 超伝導体で構成される単独の STJ を本研究では「単接合素子」とした.

また, 5.9 keV の X 線に対して Nb を用いた単接合素子の検出効率が ~ 6% であるのに 対して, サファイア基板を用いた直列接合素子の検出効率はほぼ 100% となる.

3.2.2 出力信号,スペクトル

2.3.2 でみたように単接合素子の場合,上部電極,下部電極による出力信号の違いによる ダブルピークが存在する.さらに上部電極と下部電極で検出されずに基板に吸収されたイ ベントによる phonon signal が存在し,下部電極の信号波高の40%より低い波高を持ち, 下部電極の signal よりずっと多い.直列接合素子の場合,基板でX線を吸収しフォノンに 変換した後,そのフォノンを常に下部電極で検出しているので,ダブルピークや phonon singal は生じない.

また,単接合素子のスペクトルには,超伝導フィルムが薄いためにX線の入射により生成された光電子の一部が逃げてしまったイベントによるテールが存在する.このテールのイベント数はピークを構成しているイベント数に匹敵する.直列接合素子の場合は吸収体である基板が十分厚いため,スペクトルにテールは生じない.

3.2.3 実効静電容量

直列接合はその名の通り STJ を直列につなげたものであり,一つ一つのサイズは小さいままでも直列につなぐ STJ 素子の数を工夫することにより実効的に浮遊容量を小さくすることができる.Fig. 3.1 は直列接合型 STJ 検出器の等価回路である.STJ 素子を1つのコンデンサーと考えた場合の静電容量をC,直列接合数をn,それに並列につながれている前置増幅器の入力静電容量をC'とする.また素子にはバイアス電圧 V が抵抗 R_b を介して加えられる.

最初,素子一つ一つと $C' \models Q'$ だけの電荷が存在していたとする.放射線が入射することによって,図のように k 番目の素子に Q_k の電荷が生じたとすると, V_S は次のように表すことができる.

$$V_{\rm S} = (Q_1 + Q_2 + \dots + Q_{\rm n})/C - {\rm n}Q'/C = Q'/C'$$
(3.1)

よって $Q_1 + Q_2 + \cdots + Q_k + \cdots + Q_n = Q$ とすれば

$$V_{\rm S} = Q/(C + nC') \tag{3.2}$$

となる.直列接合と浮遊容量 C' とを並列につなげることによるトータルの容量は C/n+C' であるが,式 (3.2) に現れる実効的な容量

$$C_{\rm eff} \equiv C + nC' \tag{3.3}$$

を用いてこの検出器の S/N について論じることができる.ここで一つの素子の単位面積 あたりの容量を C_0 , n 個の素子の総面積を S とすると,

$$C_{\rm eff} = SC_0/n + nC' \tag{3.4}$$

Fig. 3.1: 直列接合素子の等価回路

と書き表すことができる . したがって $C_{\rm eff}$ を
n の関数としてみれば , $C_{\rm eff}$ を最小にする n が存在し ,

$$C_{\text{eff,min}} = 2(SC_0C')^{1/2}$$
 at $n = (SC_0/C')^{1/2}$ (3.5)

となる.現実的には,素子の構造上,たとえば層が不均一になるのであまり大きな接合は 作れないなどの制限があり,nとSとは独立な変数ではない.

Nb 系の素子を用いた場合, 典型的なサイズは 100 μ m角, C_0 は数 μ F/cm² となり, 一つの素子の容量は数百 pF 程度である.また C' は用いるプリアンプによるが数十 pF であると考えると, C_{eff} は数千 pF 程度になる.

3.2.4 位置分解能

直列接合型 STJ 検出器では,基板上の直列接合の配置を工夫することにより,基板内でのフォノンの伝播速度を利用した放射線の入射位置検出が可能である.

倉門氏らは Fig. 3.2 に示すように, 2 つの直列接合素子の載ったサファイア基板に 5.5 MeV の α 粒子を照射し, それぞれの信号到達時間差²をとった.その結果 3 つのコリメーターホールに対応する 3 本の信号到達時間差のピークを得, STJ 検出器が 1 mm よりもよい位置分解能を有することを示した.

また,信号到達時刻に加えて,出力信号の波高と立ち上がり時間も入射位置依存性を持つことが知られており,当研究室において,立ち上がり時間の分布から1次元の位置分解

²すなわち,フォノンが直列接合素子に到達した時刻の差.

Fig. 3.2: 位置検出実験

能 0.3 mm が得られている.

第4章 実験装置の構成と開発

STJ 検出器は超伝導状態ではじめて検出器として動作する.したがって STJ を極低温 に保つため,冷却機が必要である.また,検出器からの信号はプリアンプを用いて精度良 く読み出す必要がある.この章では本研究で使用した冷却器,新たに製作したアンプを中 心に実験装置全般の説明をする.

4.1 直列接合型 STJ 検出器: 80NbS1

厚さ 0.4 mm のサファイア基板上に 1 mm×2.5 mm の直列接合素子が図 ?? のように 4 つ配置され,サファイア基板は 0.2 mm 厚の銅板に固定されている(Fig. 4.1) 素子の材質は,Nb/Al/AlO_X/Al/Nb である.

4.2 3 Heクライオスタット

STJの冷却は米国 Infrared Laboratory 社製の³He クライオスタットを用いて行った.これを用いると約6時間の冷却作業で約0.35Kの環境を24時間程度維持することができる.

4.2.1 構造

³He クライオスタット内は基本的に, N₂シールド, ³He ステージ, ⁴He ステージ, チャ コールポンプの熱的に独立した4つの部分から構成され, ³He ステージ – ⁴He ステージ間 とチャコールポンプ – ⁴He ステージ間は熱スイッチにより接触(または非接触)させるこ とができる. ³He ステージと ⁴He ステージには熱伝導の良い無酸素銅(OFHM)が使われ ており,高さは約 50 cm, 直径約 25 cm,総重量約 29 kg である.

4.2.2 冷却原理

ここでは、冷却手順を簡単に追いながら冷却原理を説明する.

- 1. クライオスタット内を真空にし,残存粒子による熱伝導を断つ.
- 2. ³He storage tank のバルブを開き, ³He ステージ裏 チャコールポンプ ³He storage tank の間(総称して ³He システムとする)での ³He の流出入を自由にする.
- 3. 十分真空($\sim 10^{-6}$ torr)になったら、液体 N₂ ベッセル、液体 ⁴He ベッセルに液体 N₂ をいれ、クライオスタット内部を液体窒素温度(77 K)に予冷する.
- 4. 液体 ${}^4 ext{He}$ ベッセルの液体 N_2 を追い出した後,液体 ${}^4 ext{He}$ を注入する.これにより, ${}^3 ext{He}$

Fig. 4.1: 直列接合素子 80NbS1

Fig. 4.2: 直列接合素子 80NbS1 の一部

ステージ, ${}^{4}He$ ステージ, チャコールポンプが 4.2 K 付近まで冷やされる.また, チャコールポンプ内のチャコール(活性炭)が冷やされたことにより ${}^{3}He$ を吸着する.

- ³He storage tankのバルブを閉じた後、チャコールポンプを⁴He ステージから熱的に切り離し 35 K 程度まで温める.一方、液体⁴He ベッセルを減圧する.⁴He の沸点が下がるので³He ステージ、⁴He ステージは 2.0 K 程度まで冷やされる.この過程で、温められたチャコールが吸着していた³He を放出し、その³He が³He ステージ裏に流入して液化する.
- 液体 ⁴He ベッセルの減圧終了後, ³He ステージと ⁴He ステージの熱接触を断ち, チャ コールポンプと ⁴He ステージを再び熱接触させる.そうすると, チャコールポンプが 冷やされ, ³He が再びチャコール(活性炭)に吸着される.これにより ³He システム 内は減圧され, ³He ステージ裏に液化している ³He の沸点が下がり, ³He ステージが 約 0.35K まで冷却される.

場所	温度計の形式	測定範囲	精度
⁴ He ステージ	シリコンダイオード	1.4 K 以上	$\pm 0.05 \text{ K}(T \ge 30 K)$, $\pm 0.01 \text{ K}(T \le 30 K)$
チャコールポンプ	シリコンダイオード	1.4 K 以上	$\pm 0.05 \text{ K}(T \ge 30 K)$, $\pm 0.01 \text{ K}(T \le 30 K)$
³ He (parmanent) ステージ	ゲルマニウム抵抗	6 K 以下	±0.01 K
³ He (movable) ステージ	ゲルマニウム抵抗	6 K 以下	$\pm 0.01~{ m K}$

Tab. 4.1: クライオスタット内の温度計

4.2.3 内部の装置

温度モニター

冷却過程を含め,温度はクライオスタット内に設置された4つの温度計で随時モニター している.⁴Heステージとチャコールポンプにはそれぞれシリコンダイオードが一つずつ, また³Heステージにはゲルマニウム温度計が2つついている.Tab. 4.1に温度計の設置場 所と測定可能な温度範囲をまとめておく.

磁場印加コイル

磁場の役割は 2.2.2 で述べたとおり信号検出の妨げとなるジョセフソン電流を抑制する ことである.その際に必要な磁場は 100 Gauss 程度である.我々は超伝導コイルをクライ オスタット内の⁴Heシールドに設置し,外部から電流を流すことで磁場を印加した.この 形式はクライオスタット外部から磁場を印加するのに比べて,消費電力が小さくて済むと いう利点もあるが,磁場の向きを微妙に変化させることができないなどの問題もあった.

コイルとして我々が用いた超伝導線は直径 0.1 mmの NbTi 線 (T_c = 9.4 K)で, これ を図??のように上下に約 2000 回ずつ巻いた.

当研究室で行われたコイルの測定実験から,コイルに流す電流と磁場の関係が

 $B [Gauss] = 317 \times I [A]$

(4.1)

と見積もられている.

4.3 プリアンプ

STJ 検出器からの信号電荷はプリアンプ(前置増幅器)で増幅した後に分析する.本研 究では直列接合4素子による放射線の同時検出をめざし,新たにプリアンプを4つ製作 した.

4.3.1 回路

図??が今回製作したアンプの回路図である「てんま」衛星に搭載されたチャージアン プ(Fig. 4.3)を参考にし,先年,同じ回路図をもとに製作されたアンプにより直列接合 素子による α線検出に成功した実績を持つ. 第4章 実験装置の構成と開発

- 4.3.2 設置
- 4.3.3 FET の選定
- 4.4 その他の測定機器
- 4.4.1 オシロスコープ
- 4.4.2 I-V特性測定装置

I – V 特性の測定に用いた回路は Fig. 4.4 に示すような OP07 を用いた簡単な差動アン プであり, V, Iの出力をオシロスコープの X, Yの端子につなげて測定を行う.入力には 1~数 10 Hz 程度の三角波を用いる.

4.4.3 MCA : Multi Cannel Analizer

プリアンプからの出力をメインアンプ(ORTEC157:整形時間 2 μsec)で増幅し,その 出力波高をフルスケール 8 V,12 ビットで ADC 変換して計数する.この出力がすなわちエ ネルギースペクトルになる.しかし本研究では STJ 検出器からの信号はすべて,プリアン プからの出力をそのままオシロスコープに入力して測定を行った.MCA はプリアンプの性 能評価のとき以外は用いなかった.用いたのは Laboratory Equipment 社の MCA/PC98B である.

Fig. 4.3: てんまに搭載されたチャージアンプの回路図

Fig. 4.4: I – V 特性取得用アンプ回路図

第5章 実験1: α 粒子コリメータ $0.2 \text{ mm}\phi \times 3$

5.1 セットアップ

直列接合型 STJ 検出器 80NbS1 のサファイア基板側に線源を設置し,線源と検出器の間 に α 粒子(5.5 MeV)をコリメートするために銅板(厚さ 0.5 mm,ホールは直径 0.2 mm で 0.5 mm 間隔)を挟み,それぞれをセロテープ(ニチバン)で固定する.その後,³He ステージに検出器を真鍮製のネジで固定し,読み出しの配線を接続する(Fig. 5.1)

検出器,コリメータ,放射線源の位置関係を図??に示す. α 粒子はホールよりも広い範囲(直径 ~0.4 mm の円内)に降り注ぐと予想される.

5.2 実験

冷却は約 24 時間持続し,³He ステージの温度は約 0.38 K であった.コイル電流は 0.4 A とし,バイアス電圧は 100 V とした.最終的に約 5500 のデーターを取得した.

5.3 解析

5.3.1 信号波形からのデータ抽出

オシロスコープを通して得られた波形データから,波高(パルスハイト),面積を導き, ともに信号の大きさを表すものと考えて解析を行った.

パルスハイトは,ベースラインから波形の最も高いところまでとし,面積は,ベースラ インと波形が囲む面積とし,オーバーシュートの部分は切り捨てた.

Fig. 5.1: STJ 検出器を³He ステージに設置

第6章 実験2: α 粒子コリメータ0.2 mm $\phi \times$ 9

6.1 セットアップ

直列接合型 STJ 検出器 80NbS1 に,新たに製作した線源コリメータ固定金具(Fig. 6.1) を用いて,線源(α 粒子,5.5 MeV)とコリメーター銅板(厚さ 0.5 mm,ホールは直径 0.2 mm で 0.5 mm 間隔)を固定する.その後,³He ステージに検出器を真鍮製のネジで 固定し,読み出しの配線を接続する(Fig. 6.2)

コリメータ銅板は厚さ 5 mm で直径 0.2 mm のホールが 0.5 mm 間隔で 3 × 3 の 9 個空 いている.検出器,コリメータ,放射線源の位置関係を Fig. 6.3 と Fig. 6.4 に示す.ホー ルには 1-1,1-2 などのように名前をつけ,各直列接合素子に素子 A,素子 B というように 名前を付けた.コリメータ銅板と検出器に 0.2 mm の距離があることから, α 粒子はホー ルよりも広い範囲(直径 ~0.36 mm の円内)に降り注ぐと予想される.

6.2 実験

冷却は約 24 時間持続し,³He ステージの温度は約 0.38 K であった.コイル電流は 0.4 A とし,バイアス電圧は 100 V とした.最終的に約 12000 のデーターを取得した.

6.3 解析

6.3.1 信号波形からのデータ抽出

オシロスコープを通して得られた波形データから,信号到達時刻,立ち上がり時間(ラ イズタイム),波高(パルスハイト),面積を導いた(Fig. 6.5)

波高(パルスハイト)はベースラインから波形ピークまで信号到達時刻はパルスハイトの 10%に達した時刻,ライズタイムはパルスハイトの 10%に達した時刻からパルスハイトの 90%に達した時刻とした.面積はベースラインと波形の囲む面積とし,オーバーシュートは切り捨てた.

Fig. 6.1: 線源コリメータ固定金具のパー ツ

Fig. 6.2: STJ 検出器を ³He ステージに 設置

Fig. 6.3: 検出器とコリメータホールの 位置関係(α粒子を照射する側から見た もの)

Fig. 6.5: 信号波形からのデータ抽出(面積はベースラインと波形が囲む面積)

Fig. 6.6: 信号到達時間差のスペクトル (左が X 軸方向,右が Y 軸方向)

6.3.2 信号到達時間差

オシロスコープの測定では,一つの素子(今回の実験は素子D)からの信号にトリガー をかけて測定しているため,素子それぞれの信号到達時刻のみでは意味を持たない.そこ で向かい合った素子での信号到達時刻の差について考えた.素子Bの信号到達時刻から素 子Aの信号到達時刻を引いたものを「X軸方向の信号到達時間差」とし,素子Dの信号 到達時刻から素子Cの信号到達時刻を引いたものを「Y軸方向の信号到達時間差」と定義 した.

信号到達時間差のスペクトル

X 軸方向と Y 軸方向の信号到達時間差のスペクトルを Fig. 6.6 に示す. X 軸方向, Y 軸方向ともに 3 つのピークが見られる.

X 軸方向と Y 軸方向の相関

X 軸方向の信号到達時間差と Y 軸方向のの信号到達時間差との相関を Fig. 6.7 に示す. 9 つのコリメーターホールに対応する分布が見られる.ホールによってイベント数が異なるが,おそらく線源の設置位置によるものと思われる.

信号到達時間差の物理的意味

信号到達時刻は,放射線の入射により生じたフォノンがサファイア基板を伝播し,その フォノンが直列接合素子に到達した時刻を表している.*1*を放射線の入射地点からの距離,

hole	mean	FWHM	hole	mean	FWHM	hole	mean	FWHM
1-3	-157	138	2-3	77	134	3-3	337	79
1-2	-140	138	2-2	87	123	3-2	330	61
1-1	-165	141	2-1	86	151	3-1	337	80

Tab. 6.1: X軸方向の信号到達時間差のガウシアンフィットの結果(単位は nsec)

v(l)をフォノンの伝播速度¹とすると信号到達時間差は,

$$t_1 - t_2 = \int_0^{L_1} \frac{dl}{v(l)} - \int_0^{L_2} \frac{dl}{v(l)} = \int_{L_2}^{L_1} \frac{dl}{v(l)}$$
(6.1)

と表すことができる.*t* は信号到達時刻, $L_1 \ge L_2$ は放射線入射地点から素子までの距離 である(Fig. 6.8)よってv(l)が単調に減少(または増加)するならば(おそらくそうだ と思われる), $t_1 - t_2 \ge L_1 - L_2$ は一意に決まる関係であるといえる.2素子間の距離に ついて $L = L_1 + L_2$ の関係があるから,

$$L_1 - L_2 = 2L_1 - L \tag{6.2}$$

よって信号到達時間差 $t_1 - t_2$ と放射線入射地点から素子までの距離 L_1 (または L_2)は一意に決まる関係である.すなわち信号到達時間差は放射線の入射位置の1次元の情報を与える値であるといえる.

さらにフォノンが等速に伝播するとすると,

$$t_1 - t_2 = \int_{L_2}^{L_1} \frac{dl}{v(l)} = \frac{L_1 - L_2}{v} = \frac{2L_1 - L}{v}$$
(6.3)

となり,信号到達時間差は,放射線入射地点から素子までの距離と線形になり,放射線の 入射地点の1次元情報そのものを表すことになる.

コリメータホールと分布の対応

信号到達時間差の相関のプロット点の分布とコリメーターホール(Fig. 6.3 参照)の対応は, Fig. 6.9 のようになる.この図の長方形で区切られた部分に含まれたイベントをそのコリメーターホールから入射した α 粒子によるイベントとして,以後解析する.

ホール別信号到達時間差

Fig. 6.9 をもとにイベントをコリメータホール別に分離し,それぞれをスペクトルにした(Fig. 6.10, Fig. 6.11).スペクトルをガウス関数でフィットして導いた平均(mean) と半値幅(FWHM)をTab. 6.1, Tab. 6.2に示す.

¹サファイアはフォノンに対して等方的であるとされるので,vはlの関数と書ける.

hole	mean	FWHM	hole	mean	FWHM	hole	mean	FWHM
1-3	277	77	2-3	289	58	3-3	398	1388
1-2	31	131	2-2	39	119	3-2	68	145
1-1	-233	146	2-1	-220	129	3-1	-210	99

Tab. 6.2: Y軸方向の信号到達時間差のガウシアンフィットの結果(単位は nsec)

hole	位置分解能	hole	位置分解能	hole	位置分解能
1-3	0.28	2-3	0.27	3-3	0.16
1-2	0.28	2-2	0.25	3-2	0.12
1-1	0.29	2-1	0.31	3-1	0.16

Tab. 6.3: X 軸方向の位置分解能(単位は mm)

位置分解能

ホール別信号到達時間差をフィットした結果得られた各ホールでの分布のピーク(mean)の間隔を,コリメータホールの間隔0.5 mmに対応させたときの半値幅(FWHM)を位置分解能と定義して導いた.

ホール間隔と,各ホールでの信号到達時間差の平均(mean)の相関が Fig. 6.12 で,プ ロット点を直線でフィットしてホール間隔と各ホールでの信号到達時間差を対応させると, X 軸方向では 0.5 mm が 245 nsec, Y 軸方向では 0.5 mm が 271 nsec となる.これより Tab. 6.3, Tab. 6.4 のように位置分解能が求まる.ホール直径 0.2 mm(α 粒子入射面直 径 0.36 mm)に対して,0.30 mm 程度の位置分解能が得られたことになる.

hole	位置分解能	hole	位置分解能	hole	位置分解能
1-3	0.14	2-3	0.11	3-3	2.56
1-2	0.24	2-2	0.22	3-2	0.27
1-1	0.27	2-1	0.24	3-1	0.18

Tab. 6.4: YX **軸方向の位置分解能(単位は** mm)

Fig. 6.7: 信号到達時間差の相関(横軸を X 軸方向の信号到達時間差, 縦軸を Y 軸方向の信 号到達時間差とした.4つの図はすべて同じデータをもとにしており,表示形式を変えた.)

Fig. 6.8: 信号到達時間差の物理的意味(黒丸が放射線の入射地点を表し,そこから同心円 状にフォノンが伝播する.)

Fig. 6.9: コリメータホールと分布の対応(括弧内がコリメータホールの番号, Fig. 6.3 参照)

Fig. 6.10: X 軸方向の信号到達時間差のホール別スペクトル

Fig. 6.11: Y 軸方向の信号到達時間差のホール別スペクトル

Fig. 6.12: コリメータ間隔と信号到達時間差の相関(が X 軸方向, が Y 軸方向の信号 到達時間差.それぞれを直線でフィットした.)

6.3.3 ライズタイム

スペクトル

それぞれの素子からの信号波形のライズタイムのスペクトルを Fig. 6.13 に示す.

ホール別スペクトル

コリメータホール別にイベント分離した,それぞれの素子からの信号波形のライズタイムのスペクトルを Fig. 6.14 から Fig. 6.17 に示す.

すべての素子について, α 粒子の入射地点から素子までの距離が遠くなればなるほどラ イズタイムは速くなり, α 粒子の入射地点が素子の正面から外れれば外れるほどライズタ イムは遅くなることがわかる.

これは,直列接合素子を構成する一つ一つのジョセフソン接合へフォノンが到達する時 刻が異なることに起因すると思われる(Fig. 6.18).フォノンは α 粒子の入射地点から同 心円(球)状に広がっていくと考えられる.入射地点が素子から遠い場合は,一つ一つの ジョセフソン接合へフォノンが到達する時間の差は小さいが,入射地点が素子に近づけば 近づくほど一つ一つのジョセフソン接合へフォノンが到達する時間の差が大きくなる.ま た,入射地点が素子の正面から外れれば外れるほど一つ一つのジョセフソン接合へフォノ ンが到達する時間の差が大きくなる.このようなことからライズタイムに位置依存性が見 られたものと思われるが,フォノンの拡散には様々な要素があり,定量的に議論するのは 困難である.しかし,放射線の入射位置検出に対して,信号のライスタイム(立ち上がり 時間)もひとつの指標になる可能性がある.

Fig. 6.14: コリメーターホール別ライズタイムスペクトル – 素子 A(点線で表したスペクトルはガウス関数でフィットする際に無視した部分)

Fig. 6.15: コリメーターホール別ライズタイムスペクトル – 素子B(点線で表したスペクトルはガウス関数でフィットする際に無視した部分)

Fig. 6.16: コリメーターホール別ライズタイムスペクトル – 素子 C (点線で表したスペクトルはガウス関数でフィットする際に無視した部分)

Fig. 6.17: コリメーターホール別ライズタイムスペクトル – 素子 D(点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 6.18: ライズタイムの放射線入射位置依存性(が放射線の入射地点,円がフォノンの広がりを表す. 左がライズタイムが遅い場合,右がライズタイムが速い場合.)

6.3.4 パルスハイト

スペクトル

それぞれの素子からの信号波形のパルスハイトのスペクトルを Fig. 6.19 に示す.

ホール別スペクトル

コリメータホール別にイベント分離した,それぞれの素子からの信号波形のパルスハ イトのスペクトルを Fig. 6.20 から Fig. 6.23 に示す.各素子のパルスハイトは,ホール (2-2)のパルスハイトの平均(ガウシアンフィットの mean)を基準に規格化したパルスハ イトを用いている.

すべての素子について, α 粒子の入射地点から素子までの距離が遠くなればなるほどパルスハイトは小さくなり, α 粒子の入射地点が素子の正面から外れれば外れるほどパルス ハイトは小さくなることがわかる.

これは,入射地点から直列接合素子を見込む角度と,フォノンが素子に到達するまでに 経る距離に起因するものと思われる(Fig. 6.24).見込む角度が大きくなれば放射線の入 射によって生じるすべてのフォノンに対する収集率が上がる.また,入射地点から素子ま での距離が遠くなればそれだけサファイア基板中で散乱される確立が増えるのでパルスハ イトは小さくなる.よって入射地点が素子に近くなると見込む角度が大きくなり散乱され にくくなるのでパルスハイトは大きくなり,入射地点が素子の正面からずれていくと見込 む角度が小さくなり距離も遠くなるのでパルスハイトは小さくなる.

ホール別パルスハイトの時間変動

コリメータホール別にイベント分離したそれぞれを横軸ファイル番号,縦軸パルスハイトとしてプロットした(Fig. 6.25からFig. 6.28).ファイル番号は測定順に連番で命名されるので,測定開始からの経過時間をほぼ表していることになる.

時間の経過によるパルスハイトの変化はほとんど見られなかった.よってゲイン補正等 は行わなかった.

Fig. 6.19: パルスハイトスペクトル

Fig. 6.20: コリメーターホール別パルスハイトスペクトル – 素子 A (点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 6.21: コリメーターホール別パルスハイトスペクトル – 素子B(点線で表したスペクトルはガウス関数でフィットする際に無視した部分)

Fig. 6.22: コリメーターホール別パルスハイトスペクトル – 素子 C (点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 6.23: コリメーターホール別パルスハイトスペクトル – 素子 D(点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 6.24: パルスハイトの放射線入射位置依存性(が放射線の入射地点, グレーの領域 が検出されるフォノンを表す. 左がパルスハイトが小さい場合, 右がパルスハイトが大きい場合.)

Fig. 6.25: コリメーターホール別パルスハイト時間変動 – 素子 A

Fig. 6.26: コリメーターホール別パルスハイト時間変動 – 素子 B

Fig. 6.27: コリメーターホール別パルスハイト時間変動 – 素子 C

Fig. 6.28: コリメーターホール別パルスハイト時間変動 – 素子 D

6.3.5 平均波形

コリメーターホール別の信号到達時間差の X 軸方向の平均(mean)と Y 軸方向の平均(mean)をホール別のイベントのピークの座標と定め,その座標に近い 150~200 イベントを平均して平均波形を求めた(Fig. 6.29 から Fig. 6.32).

Fig. 6.29: コリメーターホール別平均波形 – 素子 A (単位は横軸 [sec], 縦軸 [V])

Fig. 6.30: コリメーターホール別平均波形 – 素子 B(単位は横軸 [sec], 縦軸 [V])

Fig. 6.31: コリメーターホール別平均波形 – 素子 C(単位は横軸 [sec], 縦軸 [V])

Fig. 6.32: コリメーターホール別平均波形 – 素子 D(単位は横軸 [sec], 縦軸 [V])

第7章 実験3: α 粒子コリメータ $0.1 \text{ mm}\phi \times 9$

7.1 セットアップ

直列接合型 STJ 検出器 80NbS1 に,線源コリメータ固定金具(Fig. 6.1)を用いて,線 源(α粒子,5.5 MeV)とコリメーター銅板(厚さ 0.5 mm,ホールは直径 0.1 mm で 0.5 mm 間隔)を固定する.その後,³He ステージに検出器を真鍮製のネジで固定し,読み出 しの配線を接続する(Fig. 6.2)

コリメータ銅板は厚さ 5 mm で直径 0.1 mm のホールが 0.5 mm 間隔で 3 × 3 の 9 個空 いている.検出器,コリメータ,放射線源の位置関係を Fig. 7.1 と Fig. 7.2 に示す.ホー ルには 1-1,1-2 などのように名前をつけ,各直列接合素子に素子 A,素子 B というように 名前を付けた.コリメータ銅板と検出器に 0.2 mm の距離があることから, α 粒子はホー ルよりも広い範囲(直径 ~0.18 mm の円内)に降り注ぐと予想される.

7.2 実験

冷却は約 24 時間持続し,³He ステージの温度は約 0.38 K であった.コイル電流は 0.4 A とし,バイアス電圧は 100 V とした.最終的に約 3000 のデーターを取得した.

7.3 解析

7.3.1 信号波形からのデータ抽出

オシロスコープを通して得られた波形データから,信号到達時刻,立ち上がり時間(ラ イズタイム),波高(パルスハイト),面積を導いた(Fig. 7.3)

波高(パルスハイト)はベースラインから波形ピークまで信号到達時刻はパルスハイトの 10%に達した時刻,ライズタイムはパルスハイトの 10%に達した時刻からパルスハイトの 90%に達した時刻とした.面積はベースラインと波形の囲む面積とし,オーバーシュートは切り捨てた.

Fig. 7.2: 検出器 , コリメータ , 放射線源 の位置関係

Fig. 7.1: 検出器とコリメータホールの 位置関係(α粒子を照射する側から見た もの)

Fig. 7.3: 信号波形からのデータ抽出(面積はベースラインと波形が囲む面積)

Fig. 7.4: 信号到達時間差のスペクトル (左が X 軸方向,右が Y 軸方向)

7.3.2 信号到達時間差

オシロスコープの測定では,一つの素子(今回の実験は素子D)からの信号にトリガー をかけて測定しているため,素子それぞれの信号到達時刻のみでは意味を持たない.そこ で向かい合った素子での信号到達時刻の差について考えた.素子Bの信号到達時刻から素 子Aの信号到達時刻を引いたものを「X軸方向の信号到達時間差」とし,素子Dの信号 到達時刻から素子Cの信号到達時刻を引いたものを「Y軸方向の信号到達時間差」と定義 した.

信号到達時間差のスペクトル

X 軸方向と Y 軸方向の信号到達時間差のスペクトルを Fig. 7.4 に示す. X 軸方向, Y 軸方向ともに 3 つのピークが見られる.

X 軸方向と Y 軸方向の相関

X 軸方向の信号到達時間差と Y 軸方向のの信号到達時間差との相関を Fig. 7.5 に示す. 9 つのコリメーターホールに対応する分布が見られる.ホールによってイベント数が異なるが,おそらく線源の設置位置によるものと思われる.

コリメータホールと分布の対応

信号到達時間差の相関のプロット点の分布とコリメーターホール(Fig. 7.1 参照)の対応は, Fig. 7.6 のようになる.この図の長方形で区切られた部分に含まれたイベントをそのコリメーターホールから入射した α 粒子によるイベントとして,以後解析する.
hole	mean	FWHM	hole	mean	FWHM	hole	mean	FWHM
1-3	-165	34	2-3	59	28	3-3	261	41
1-2	-146	32	2-2	49	35	3-2	250	54
1-1	-165	41	2-1	66	33	3-1	263	47

Tab. 7.1: X 軸方向の信号到達時間差のガウシアンフィットの結果(単位は nsec)

hole	mean	FWHM	hole	mean	FWHM	hole	mean	FWHM
1-3	201	46	2-3	198	37	3-3	232	37
1-2	9	40	2-2	9	37	3-2	22	37
1-1	-211	47	2-1	-217	51	3-1	-211	45

Tab. 7.2: Y 軸方向の信号到達時間差のガウシアンフィットの結果(単位は nsec)

ホール別信号到達時間差

Fig. 7.6 をもとにイベントをコリメータホール別に分離し,それぞれをスペクトルにした(Fig. 7.7, Fig. 7.8). スペクトルをガウス関数でフィットして導いた平均(mean)と 半値幅(FWHM)をTab. 7.1, Tab. 7.2 に示す.

位置分解能

ホール別信号到達時間差をフィットした結果得られた各ホールでの分布のピーク(mean)の間隔を,コリメータホールの間隔0.5 mmに対応させたときの半値幅(FWHM)を位置分解能と定義して導いた.

ホール間隔と,各ホールでの信号到達時間差の平均(mean)の相関が Fig. 7.9 で,プ ロット点を直線でフィットしてホール間隔と各ホールでの信号到達時間差を対応させると, X 軸方向では 0.5 mm が 208 nsec, Y 軸方向では 0.5 mm が 212 nsec となる.これより Tab. 7.3, Tab. 7.4 のように位置分解能が求まる.ホール直径 0.1 mm(α 粒子入射面直 径 0.18 mm)に対して,0.20 mm 程度の位置分解能が得られたことになる.

フォノン伝播速度の見積もり

入射地点から素子までの距離の差によってフォノン到達時間差が生じたと考えられるから、フォノンの速度が見積もれて(Fig. 7.10)、距離差が0.84 mm、時間差が平均して $0.21 \mu \text{mm}$ であるので、フォノンの伝播速度 $4.0 \times 10^3 \text{ m/sec}$ が得られる.文献値は $10.9 \times 10^3 \text{ m/sec}$ (Lモード)、 $6.45 \times 10^3 \text{ m/sec}$ (Tモード)である.

hole	位置分解能	hole	位置分解能	hole	位置分解能
1-3	0.19	2-3	0.16	3-3	0.23
1-2	0.18	2-2	0.20	3-2	0.30
1-1	0.23	2-1	0.18	3-1	0.27

Tab. 7.3: X 軸方向の位置分解能(単位は mm)

hole	位置分解能	hole	位置分解能	hole	位置分解能
1-3	0.26	2-3	0.21	3-3	0.20
1-2	0.22	2-2	0.20	3-2	0.21
1-1	0.26	2-1	0.28	3-1	0.25

Tab. 7.4: YX **軸方向の位置分解能(単位は** mm)

Fig. 7.5: 信号到達時間差の相関(横軸を X 軸方向の信号到達時間差, 縦軸を Y 軸方向の信 号到達時間差とした.4つの図はすべて同じデータをもとにしており,表示形式を変えた.)

Fig. 7.6: **コリメータホールと分布の対応(括弧内がコリメータホールの番号**, Fig. 7.1 参照)

Fig. 7.7: X 軸方向の信号到達時間差のホール別スペクトル

Fig. 7.8: Y 軸方向の信号到達時間差のホール別スペクトル

Fig. 7.9: コリメータ間隔と信号到達時間差の相関(が X 軸方向, が Y 軸方向の信号 到達時間差.それぞれを直線でフィットした.)

Fig. 7.10: フォノン速度の見積もり

7.3.3 ライズタイム

スペクトル

それぞれの素子からの信号波形のライズタイムのスペクトルを Fig. 7.11 に示す.

ホール別スペクトル

コリメータホール別にイベント分離した,それぞれの素子からの信号波形のライズタイムのスペクトルを Fig. 7.12 から Fig. 7.15 に示す.

すべての素子について, α 粒子の入射地点から素子までの距離が遠くなればなるほどラ イズタイムは速くなり, α 粒子の入射地点が素子の正面から外れれば外れるほどライズタ イムは遅くなることがわかる.

これは,直列接合素子を構成する一つ一つのジョセフソン接合へフォノンが到達する時 刻が異なることに起因すると思われる(Fig. 6.18).フォノンは α 粒子の入射地点から同 心円(球)状に広がっていくと考えられる.入射地点が素子から遠い場合は,一つ一つの ジョセフソン接合へフォノンが到達する時間の差は小さいが,入射地点が素子に近づけば 近づくほど一つ一つのジョセフソン接合へフォノンが到達する時間の差が大きくなる.ま た,入射地点が素子の正面から外れれば外れるほど一つ一つのジョセフソン接合へフォノ ンが到達する時間の差が大きくなる.このようなことからライズタイムに位置依存性が見 られたものと思われるが,フォノンの拡散には様々な要素があり,定量的に議論するのは 困難である.しかし,放射線の入射位置検出に対して,信号のライスタイム(立ち上がり 時間)もひとつの指標になる可能性がある.

時間分解能

放射線 a による信号を検出した後,放射線 b による信号を判別しなければならないから (Fig. 7.16), T_1 + ライズタイム – T_2 が時間分解能となり, $\sim 2 \mu sec$ が得られる.

Fig. 7.11: ライズタイムスペクトル

Fig. 7.12: コリメーターホール別ライズタイムスペクトル – 素子 A (点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 7.13: コリメーターホール別ライズタイムスペクトル – 素子B(点線で表したスペクトルはガウス関数でフィットする際に無視した部分)

Fig. 7.14: コリメーターホール別ライズタイムスペクトル – 素子 C (点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 7.15: コリメーターホール別ライズタイムスペクトル – 素子 D(点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 7.16: **時間分解能**

7.3.4 パルスハイト

スペクトル

それぞれの素子からの信号波形のパルスハイトのスペクトルを Fig. 7.17 に示す.

ホール別スペクトル

コリメータホール別にイベント分離した,それぞれの素子からの信号波形のパルスハ イトのスペクトルを Fig. 7.18 から Fig. 7.21 に示す.各素子のパルスハイトは,ホール (2-2)のパルスハイトの平均(ガウシアンフィットの mean)を基準に規格化したパルスハ イトを用いている.

すべての素子について, α 粒子の入射地点から素子までの距離が遠くなればなるほどパルスハイトは小さくなり, α 粒子の入射地点が素子の正面から外れれば外れるほどパルス ハイトは小さくなることがわかる.

これは,入射地点から直列接合素子を見込む角度と,フォノンが素子に到達するまでに 経る距離に起因するものと思われる(Fig. 6.24).見込む角度が大きくなれば放射線の入 射によって生じるすべてのフォノンに対する収集率が上がる.また,入射地点から素子ま での距離が遠くなればそれだけサファイア基板中で散乱される確立が増えるのでパルスハ イトは小さくなる.よって入射地点が素子に近くなると見込む角度が大きくなり散乱され にくくなるのでパルスハイトは大きくなり,入射地点が素子の正面からずれていくと見込 む角度が小さくなり距離も遠くなるのでパルスハイトは小さくなる.

ホール別パルスハイトの時間変動

コリメータホール別にイベント分離したそれぞれを横軸ファイル番号,縦軸パルスハイトとしてプロットした(Fig. 7.22からFig. 7.25).ファイル番号は測定順に連番で命名されるので,測定開始からの経過時間をほぼ表していることになる.

時間の経過によるパルスハイトの変化はほとんど見られなかった.よってゲイン補正等 は行わなかった.

エネルギー分解能

パルスハイトからエネルギー分解能を,入射位置によるパルスハイトの違いを補正して 見積もった(Fig. 7.26).ホール(1-2)(2-2)(3-2)の素子Bのパルスハイトと素子 Aのパルスハイトの相関(Fig. 7.26 左上.横軸が素子Bのパルスハイト,縦軸が素子A のパルスハイト.)を指数関数A = f(B)でフィットする(Fig. 7.26 左上).得られた曲 線でパルスハイト相関を補正して(Fig. 7.26 右下.横軸がB,縦軸がA/f(B).),ホー ル(2-2)についての素子Aのパルスハイトスペクトル(= A/f(B))から半値幅を求め た.これからエネルギー分解能は7.8%が得られる.

Fig. 7.17: パルスハイトスペクトル

Fig. 7.18: コリメーターホール別パルスハイトスペクトル – 素子 A (点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 7.19: コリメーターホール別パルスハイトスペクトル – 素子B(点線で表したスペクトルはガウス関数でフィットする際に無視した部分)

Fig. 7.20: コリメーターホール別パルスハイトスペクトル – 素子 C (点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 7.21: コリメーターホール別パルスハイトスペクトル – 素子 D(点線で表したスペク トルはガウス関数でフィットする際に無視した部分)

Fig. 7.22: コリメーターホール別パルスハイト時間変動 – 素子 A

Fig. 7.23: コリメーターホール別パルスハイト時間変動 – 素子 B

Fig. 7.24: コリメーターホール別パルスハイト時間変動 – 素子 C

Fig. 7.25: コリメーターホール別パルスハイト時間変動 – 素子 D

Fig. 7.26: エネルギー分解能

第8章 実験4: α 粒子全面照射

8.1 セットアップ

直列接合型 STJ 検出器 80NbS1 に,線源コリメータ固定金具(Fig. 6.1)を用いて,線 源(α粒子,5.5 MeV)とコリメータープラスチック(厚さ 0.5 mm)を固定する.その後, ³He ステージに検出器を真鍮製のネジで固定し,読み出しの配線を接続する(Fig. 6.2) コリメータプラスチックは厚さ 5 mm で1 mm 角程度の(ほぼ)正方形の穴があいてい

る.検出器,コリメータ,放射線源の位置関係を Fig. 8.1 と Fig. 8.2 に示す.

8.2 実験

冷却は約 24 時間持続し,³He ステージの温度は約 0.38 K であった.コイル電流は 0.4 A とし,バイアス電圧は 100 V とした.最終的に約 15000 のデータを取得した.

8.3 解析

8.3.1 信号波形からのデータ抽出

オシロスコープを通して得られた波形データから,信号到達時刻,立ち上がり時間(ラ イズタイム),波高(パルスハイト),面積を導いた(Fig. 8.3)

波高(パルスハイト)はベースラインから波形ピークまで信号到達時刻はパルスハイトの 10%に達した時刻,ライズタイムはパルスハイトの 10%に達した時刻からパルスハイトの 90%に達した時刻とした.面積はベースラインと波形の囲む面積とし,オーバーシュートは切り捨てた.

Fig. 8.2: 検出器 , コリメータ , 放射線源 の位置関係

Fig. 8.1: 検出器とコリメータホールの 位置関係(α粒子を照射する側から見た もの)

Fig. 8.3: 信号波形からのデータ抽出(面積はベースラインと波形が囲む面積)

8.3.2 信号到達時間差

オシロスコープの測定では,一つの素子(今回の実験は素子D)からの信号にトリガー をかけて測定しているため,素子それぞれの信号到達時刻のみでは意味を持たない.そこ で向かい合った素子での信号到達時刻の差について考えた.素子Bの信号到達時刻から素 子Aの信号到達時刻を引いたものを「X軸方向の信号到達時間差」とし,素子Dの信号 到達時刻から素子Cの信号到達時刻を引いたものを「Y軸方向の信号到達時間差」と定義 した.

X 軸方向と Y 軸方向の相関

X軸方向の信号到達時間差とY軸方向のの信号到達時間差との相関を Fig. 8.4 に示す.

8.3.3 パルスハイト

X 軸を X 軸方向の信号到達時間差, Y 軸を Y 軸方向のの信号到達時間差, Z 軸をパル スハイトとしたグラフを Fig. 8.5 に示す. X 軸を 10 個, Y 軸を 10 個の 100 個の領域に分 けてそれぞれの領域でのパルスハイトを平均して表示した.

8.3.4 ライズタイム

X 軸を X 軸方向の信号到達時間差, Y 軸を Y 軸方向のの信号到達時間差, Z 軸をライ ズタイムとしたグラフを Fig. 8.5 に示す. X 軸を 10 個, Y 軸を 10 個の 100 個の領域に分 けてそれぞれの領域でのライズタイムを平均して表示した.

Fig. 8.4: 信号到達時間差の相関(横軸を X 軸方向の信号到達時間差,縦軸を Y 軸方向の信 号到達時間差とした.4つの図はすべて同じデータをもとにしており,表示形式を変えた.)

Fig. 8.5: パルスハイトの入射位置依存性(左上が素子 A,右上が素子 B,左下が素子 C, 右下が素子 Dのパルスハイト)

Fig. 8.6: ライズタイムの入射位置依存性(左上が素子 A,右上が素子 B,左下が素子 C, 右下が素子 Dのライズタイム)

おまけ A 信号波形からのデーター抽出

オシロスコープから宮崎さんソフトで取り込んだ信号波形(tdc ファイル)は以下のス クリプトと DISPLAY45のコマンドファイルを組み合わせて,信号到達時刻,ライズタイ ム,パルスハイト,面積を抽出しています.

A.1 信号到達時刻, ライズタイム, パルスハイト

以下の phPLAYv2.sh と phPLAYv2.com を tdc ファイルのあるディレクトリにコピー して, phPLAYv2.sh を実行します.基本的には phPLAYv2.sh が tdc ファイルを読み込ん で phPLAYv2.com でデータの抽出をする形です.

最終的に phch*.dat, phch*_10pc.dat, phch*_90pc.datが出来て(*は1~4), それぞれ ピークになった時間とピークの高さ, ピークの10%になった時間とそのときの高さ, ピー クの 90%になった時間とそのときの高さが tdc ファイルの数だけ書かれたファイルになり ます.その順番は phfilename.dat に書いてあるある順番です.

ライズタイムを求めるときは phch*_10pc.dat と phch*_90pc.dat を paste して awk しま しょう.

A.1.1 phPLAYv2.sh

```
#!/bin/csh -f
```

```
rm -f ph*.dat
```

setenv DISPLAY_DEVICE 0

```
foreach file (*.tdc)
```

```
echo $file >> phfilename.dat
```

```
set f='basename $file .tdc'
```

```
perl ~murakami/bin/tdc2asc2.pl $file
```

dis45x <<EOF

```
@f=$f
```

```
include "awk '(/^[0-9]/){ print \$1, \$2; }' ${f}.asc |" XY 100 "CH1: $f"
include "awk '(/^[0-9]/){ print \$1, \$3; }' ${f}.asc |" XY 200 "CH2: $f"
include "awk '(/^[0-9]/){ print \$1, \$4; }' ${f}.asc |" XY 300 "CH3: $f"
include "awk '(/^[0-9]/){ print \$1, \$5; }' ${f}.asc |" XY 400 "CH4: $f"
```

```
@ phPLAYv2.com
exit
EOF
rm -f ${f}.asc
end
        sed 's/TEK//' phfilename.dat > phfilename1.dat
        sed 's/.tdc//' phfilename1.dat > phfilenumber.dat
        rm -f phfilename1.dat
```

```
A.1.2 phPLAYv2.com
```

```
h 100
imsmo gauss 32
h 101
blow 0.01E-4 0.15E-4 n
stat
h 101 offset -$(stat.ymean)
minmax
echo >>phch1.dat "$(minmax.xma) $(minmax.yma)"
@90pc='echo "$(minmax.yma)*0.9" | bc -1'
@10pc='echo "$(minmax.yma)*0.1" | bc -l'
ceiling $(90pc) 1 $(90pc)
n minmax
echo >>phch1_90pc.dat "$(minmax.xma) $(minmax.yma)"
ceiling $(10pc) 1 $(10pc)
n minmax
echo >>phch1_10pc.dat "$(minmax.xma) $(minmax.yma)"
h 200
imsmo gauss 32
h 201
blow 0.01E-4 0.15E-4 n
stat
h 201 offset -$(stat.ymean)
minmax
echo >>phch2.dat "$(minmax.xma) $(minmax.yma)"
@90pc='echo "$(minmax.yma)*0.9" | bc -1'
@10pc='echo "$(minmax.yma)*0.1" | bc -1'
ceiling $(90pc) 1 $(90pc)
n minmax
```

```
echo >>phch2_90pc.dat "$(minmax.xma) $(minmax.yma)"
ceiling $(10pc) 1 $(10pc)
n minmax
echo >>phch2_10pc.dat "$(minmax.xma) $(minmax.yma)"
h 300
imsmo gauss 32
h 301
blow 0.01E-4 0.15E-4 n
stat
h 301 offset -$(stat.ymean)
minmax
echo >>phch3.dat "$(minmax.xma) $(minmax.yma)"
@90pc='echo "$(minmax.yma)*0.9" | bc -1'
@10pc='echo "$(minmax.yma)*0.1" | bc -l'
ceiling $(90pc) 1 $(90pc)
n minmax
echo >>phch3_90pc.dat "$(minmax.xma) $(minmax.yma)"
ceiling $(10pc) 1 $(10pc)
n minmax
echo >>phch3_10pc.dat "$(minmax.xma) $(minmax.yma)"
h 400
imsmo gauss 32
h 401
blow 0.01E-4 0.15E-4 n
stat
h 401 offset -$(stat.ymean)
minmax
echo >>phch4.dat "$(minmax.xma) $(minmax.yma)"
@90pc='echo "$(minmax.yma)*0.9" | bc -1'
@10pc='echo "$(minmax.yma)*0.1" | bc -l'
ceiling $(90pc) 1 $(90pc)
n minmax
echo >>phch4_90pc.dat "$(minmax.xma) $(minmax.yma)"
ceiling $(10pc) 1 $(10pc)
n minmax
echo >>phch4_10pc.dat "$(minmax.xma) $(minmax.yma)"
```

A.2 面積

やり方はは phPLAY と同じです.

最終的に mech*.dat(*は1~4)が出来て,面積がtdcファイルの数だけ書かれたファイルになります.その順番は mefilename.dat に書いてある順番です.

A.2.1 mensekiPLAYv4.sh

```
#!/bin/csh -f
rm -f me*.dat
setenv DISPLAY_DEVICE 0
foreach file (*.tdc)
        echo $file >> mefilename.dat
        set f='basename $file .tdc'
        perl ~murakami/bin/tdc2asc2.pl $file
        dis45x
                <<EOF
@f=$f
include "awk '(/^[0-9]/){ print \$1, \$2, \$3, \$4, \$5; }' ${f}.asc |"
N 100 5 t a b c d "$f"
@ mensekiPLAYv4.com
exit
EOF
        rm -f ${f}.asc
end
        sed 's/TEK//' mefilename.dat > mefilename1.dat
        sed 's/.tdc//' mefilename1.dat > mefilenumber.dat
        rm -f mefilename1.dat
exit 0
```

A.2.2 mensekiPLAYv4.com

h 100 blow 1 t 0.01E-4 0.15E-4 n stat a N 0 0 @AA=\$(stat.mean) stat b N 0 0 @BB=\$(stat.mean) stat c N 0 0 @CC=\$(stat.mean)

おまけ A 信号波形からのデーター抽出

stat d N 0 0
@DD=\$(stat.mean)
h 100
ntcalc 0 0 t a-\$(AA) b-\$(BB) c-\$(CC) d-\$(DD)
h 102
blow 2 t 0.2E-4 0.4E-4 a 0

n

stat a N 0 0
echo >>mech1.dat "\$(stat.sum)"
h 102
blow 2 t 0.2E-4 0.4E-4 b 0

n

stat b N 0 0
echo >>mech2.dat "\$(stat.sum)"
h 102
blow 2 t 0.2E-4 0.4E-4 c 0

n

stat c N 0 0
echo >>mech3.dat "\$(stat.sum)"
h 102
blow 2 t 0.2E-4 0.4E-4 d 0

n

stat d N 0 0
echo >>mech4.dat "\$(stat.sum)"

A.3 さらにおまけ

phPLAY, mensekiPLAY し終わったら,以下のファイルを実行してもいいかもしれません.

A.3.1 mkdat.sh

#!/bin/csh -f

paste phch1_10pc.dat phch2_10pc.dat > temp1.dat awk '{ print \$3-\$1; }' temp1.dat > atB-A.dat paste phch3_10pc.dat phch4_10pc.dat > temp2.dat
```
awk '{ print $3-$1; }' temp2.dat > atD-C.dat
```

```
paste phch1_10pc.dat phch1_90pc.dat > temp3.dat
awk '{ print $3-$1; }' temp3.dat > rtA.dat
paste phch2_10pc.dat phch2_90pc.dat > temp4.dat
awk '{ print $3-$1; }' temp4.dat > rtB.dat
paste phch3_10pc.dat phch3_90pc.dat > temp5.dat
awk '{ print $3-$1; }' temp5.dat > rtC.dat
paste phch4_10pc.dat phch4_90pc.dat > temp6.dat
awk '{ print $3-$1; }' temp6.dat > rtD.dat
```

```
awk '{ print $2; }' phch1.dat > phA.dat
awk '{ print $2; }' phch2.dat > phB.dat
awk '{ print $2; }' phch3.dat > phC.dat
awk '{ print $2; }' phch4.dat > phD.dat
```

cp mech1.dat meA.dat cp mech2.dat meB.dat cp mech3.dat meC.dat cp mech4.dat meD.dat

rm -f temp*

exit O

おまけ B 研究の動機

Fig. B.1: 研究の動機(犬橋隆哉作)

参考文献改めパクリ対象

- [1] 菊地健一,修士論文「超伝導トンネル接合を用いた X 線検出器の開発」(東京都立大 学,1996年)
- [2] 宮崎宏幸,修士論文「超伝導トンネル接合によるX線検出とその特性評価」(東京都 立大学,1997年)
- [3] 六反田悦子,修士論文「超伝導トンネル接合素子のX線分光撮像特性の研究」(東京 都立大学,1998年)
- [4] 久志野彰寛,修士論文「超伝導トンネル接合検出器のX線撮像性能の研究」(東京都 立大学,1999年)
- [5] 浮辺雅宏,修士論文「超伝導トンネル接合型X線検出器の開発」(東京大学,1995年)
- [6] 浮辺雅宏,博士論文「超伝導トンネル接合素子を用いた高分解能 X 線検出器の研究」 (東京大学,1998年)
- [7] 代表者大橋隆哉, 文部省科研費成果報告書「超伝導トンネル接合素子を用いた宇宙 X 線検出器の開発」(東京都立大学, 1998年)
- [8] 田辺美香,卒業特別レポート「X線検出器に用いるプリアンプの製作」(東京都立大学,1998年)
- [9] 影井智宏,修士論文「Ti-Au 薄膜を用いたマイクロカロリメータによる X 線検出」 (東京都立大学,2001年)
- [10] Y.Ishisaki 他,マニュアル「DISPLAY45」(東京都立大学,1999年)
- [11] 鈴木雅臣著「定本 トランジスタ回路の設計」(CQ 出版社)
- [12] 乙部厳己+江口庄英著「pIATEX 2_ε for WINDOWS Another Manual Vol.1 Basic Kit 1999」(ソフトバンクパブリッシング)