# すざく衛星による木星のデータ解析

宇宙実験研究室 0440776 笹平康太郎 ● 半径7万kmの巨大惑星が10時間で自転:磁気圏での粒子 加速

●衛星イオの火山活動:イオからのイオンが木星にトラップ
 →活動性が高くx線観測に適した惑星

#### 木星からのX線について



#### すざく衛星

・打ち上げ日時・・・2005年7月10日

・搭載されている検出器・・・XRT(X線反射鏡) <u>XIS(X線CCDカメラ)</u> HXD(硬X線検出器)

・性能・・・低バックグラウンドかつ高いエネルギー分解能(~120eV@6keV)

→広がった天体・低エネルギー側の観測で適している。

## 本研究の目的

- ・すざく衛星での観測データを解析し、木星からのX線について調べる。
- ・Chandra や XMM-Newtonの結果との比較。
- ・太陽活動極小期(11年周期)における木星のX線放射。
- ・軟X線(~1keV)のエネルギースペクトル。

イメージ解析

観測日時・・・2006年2月24日~2月28日(4ポインティング) (2006年から2007年は太陽活動極小期) 積分時間・・・160 k sec 木星までの距離・・・7.5 x 10<sup>8</sup> km (地球から太陽までの距離の約5倍) 木星の動き・・・1分角/day 木星の位置・・・緑色の円(半径20")

#### 3つイメージ結果から0.2-0.4keVで 木星のX線が強く放射されているのがわかる。



0.2—0.4keV

0.4 - 2.0 keV

2.0-10keV

エネルギースペクトル

スペクトルは 木星の中心から半径3分角の領域 バックグラウンドは円環3-6分角の領域

#### 0.2-0.3keVで盛り上がり。







#### まとめと考察

|                              | Chandra              | XMM-Newton           | すざく                 |
|------------------------------|----------------------|----------------------|---------------------|
| 観測時期                         | 2000年12月             | 2003年11月             | 2006年2月             |
| エネルギー範囲                      | 0.1-10 keV           | 0.2-7 keV            | 0.2—0.4 keV         |
| 木星のX線光度(x 10 <sup>9</sup> W) | 0.37                 | 1.0                  | 0.28                |
| 太陽のX線強度(W/m²)                | 1 x 10 <sup>-6</sup> | 1 x 10 <sup>-6</sup> | 1x 10 <sup>-8</sup> |
| 太陽風プロトン(個/cm²/s)             | 4 x 10 <sup>8</sup>  | 4 x 10 <sup>8</sup>  | 2 x 10 <sup>8</sup> |

- ・「すざく」により太陽極小期で木星からの軟X線を検出
- ・XMM-Newtonより、軟X線が卓越
  - ・太陽X線はすざく観測時は2桁低い
    →木星大気での散乱は無視できる、極成分が主?
  - ・極成分 = 制動放射 + 電荷交換(太陽風, 衛星イオ)
  - ・軟X線の制動放射もしくは電荷交換が増えた?
    - ・電荷交換:太陽風プロトンはあまり変わらない
      → 衛星イオからのイオン供給に変化?

# おわり

### ライトカーブ

低エネルギー側(0.2-0.4keV)からX線が放射しているのがわかったので、 すべての時間における低エネルギーバンドのライトカーブをプロットした。 また、パワースペクトルの結果を示す。特に目立った周波数はなく、放射の 周期変動は見られなかった。



スペクトルその2

低エネルギー側以外でのスペクトル放射について



#### Chandra とXMM-Newton とすざく

|                           | Chanderae |                |               |
|---------------------------|-----------|----------------|---------------|
| 角度分解能                     | 0.5″      | 5″             | 120"          |
| 面積@1keV[cm <sup>2</sup> ] | 300(ACIS) | 2000(MOS + pn) | 1000(FI + BI) |
| E分解能@6keV[eV]             | 200       | 150            | 120           |
| エネルギー範囲                   | 0.5—7keV  | 0.2—15keV      | 0.2—600keV    |
| バックグラウンド                  | 高い        | 高い             | 低い            |

イメージや暗い点源の検出なら・・・Chandra 点源の統計の良いスペクトルなら・・・XMM-Newton 広がった天体なら・・・**すざく** 

# XMM-Newtonの観測で使用された モデルについて

|                  | 温度(keV)                                                                       | Normalisation(10 <sup>-6</sup> ph cm <sup>-2</sup> s <sup>-1</sup> ) |
|------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 制動放射             | $0.4 \pm 0.07$                                                                | 25.9±7.0                                                             |
| Power law        | $0.2 \pm 0.17$                                                                | $0.4 \pm 0.1$                                                        |
| Line Energy(keV) | Flux(10 <sup>-6</sup> ph cm <sup>-2</sup> s <sup>-1</sup> keV <sup>-1</sup> ) |                                                                      |
| 0.32             | 37.9±10                                                                       |                                                                      |
| 0.57             | 12.2±1.8                                                                      |                                                                      |
| 0.69             | 3.3±0.9                                                                       |                                                                      |
| 0.83             | 12.5±0.5                                                                      |                                                                      |

### 弾性散乱と蛍光散乱

弾性散乱・・・散乱される粒子のエネルギーは保存され(周波数が変化しない)、粒子の伝 播する方向だけが変わる散乱。

**蛍光散乱**•••





#### 2本のガウシアンのモデルフィットの結果

| エネルギー中心(keV)                             | 0.24                         |  |
|------------------------------------------|------------------------------|--|
| 強度(ph cm <sup>-2</sup> s <sup>-1</sup> ) | $4.1 \pm 1.1 \times 10^{-5}$ |  |
| エネルギー中心(keV)                             | 0.28                         |  |
| 強度(ph cm <sup>-2</sup> s <sup>-1</sup> ) | $7.5 \pm 4.8 \times 10^{-6}$ |  |
| χ²/d.o.f.                                | 8.52/21                      |  |









X線天文学について

X線は波長が約0.001nm~10nmの電磁波のことを指す。

・X線は大気に吸収されてしまい、地表まで到達できないので人工衛星などで 観測する。

・X線はほかの電磁波と比べ、はるかに波長が短いためにエネルギーが高く、 透過率も高い。

→ X線観測は高エネルギーの物理現象を観測でき、また、暗黒星雲やガス 雲の影響を受けにくく、その背後に隠れている天体の観測ができる。