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モチベーション
• 私の興味は銀河系内の広がった高温プラズマ => 点源は除去してから解析する。


‣ Galactic Center => 解析領域にさまざまなスペクトル・光度を持つ点源が密集


‣ Galactic Hot Halo => 100以上の観測に対して統一的に点源除去作業が必要


1 46 92 138 183 229 274 320 365 411 456

225.000270.000315.000 45.00090.000135.000180.000

-90
.000

-60.000

-30.000

0.
00
0

30
.00
0

60.0
00

90.000

ESO318-021

BULLET-BKG

NGC3402_BACKGROUND

Q0109-3518
Q0122-380

NGC_3281

ESO_263-G013

NGC3393

IRASF11223-1244

1H_0707-495

SEP_#4SEP_#3SEP_#2SEP_#1
LMC_X-3_OFF_FIELD_1LMC_X-3_OFF_FIELD_1

SKY_53.3_-63.4
SKY_50.0_-62.4

VICINITY_OF_LMC_X-3

HIGH_LAT._DIFFUSE_B

TW_HYA

RCS022456-0348.8

SDSS_J0854+3524

1RXJ0603_OFFSET

FILAMENT_JUNCTION_3

NGC_720_OFFSET

RCS0928+3646

NGC720

UGC_03142

J081618.99+482328.4

SWIFT_J0444.1+2813

IRAS08572+3915

LDN1563

MBM16

LDN1563

MBM16

LDN1563

MBM16MBM16HE_FOCUSING_CONEHE_FOCUSING_CONE

MRK_421_OFFSETMRK_421_OFFSET

GRB_090709A

NGC5866

FILAMENT_JUNCTION_1

MRK533

2FGL_J0022.2-1853

SDSS_J1723+5553

SDSS_J1352+4239

3C_452

BL_LACERTAE

KAZ_102

OFF-FIELD3

NEP_#4NEP_#3NEP_#2NEP_#1

LOW_LATITUDE_97-10

LOW_LATITUDE_86-21

DRACO_HVC_REGION_A

NEP

SWIFT_J2319.4+2619

1FGL_J2339.7-0531

10_LAC

PSR_J1957+5036

CH_CYG

NEP

Soft Hard

1 deg

なんとかして自動化したい！



既存の手法
• wavelet function を使ったcorrelation解析 が一般的 (e.g., CIAOのwavdetect)

(Freeman+2002)

空間分解能の良い Chandra や XMM-Newtonでは実績あり

• すざくやひとみの point spread function は 同心円状ではない

S12 The XRT onboard Suzaku [Vol. 59,

Fig. 1. Schematic view of the Suzaku XRT mounted on the top plate of the Extensible Optical Bench (EOB). By courtesy of K. Abe, NIPPI Corporation.

Fig. 2. Picture of the module XRT-I1. Note that the thermal shield is not yet attached.
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Fig. 1. XIS images in 0.5–2 keV (top), 2–5 keV (middle), and 5–8 keV (bottom) in the full field of the XIS. Left, middle, and right are from XIS 0, 1, and 3,
respectively (the upper and right directions correspond to north and west, respectively). The position of HD 149901 is indicated by the arrow in the
0.5–2 keV band image of XIS 1. The white dotted lines are “dark lanes” (see text). (Color online)

an additional power-law for the high energy continuum.
Due to the limited photon statistics, whether the power-law
is of non-thermal synchrotron emission origin or another
thermal plasma is not clear. The distance to G337.2−0.7
and the age are restricted to be 2.0–9.3 kpc and 750–
3500 yr, respectively (Rakowski et al. 2006).

This paper reports on a detailed X-ray study using
Suzaku (Mitsuda et al. 2007), and discusses the nature of
G337.2−0.7. The errors are at the 90% confidence level,
while figures 3 and 4 show the 1 σ errors.

2 Observation and data reduction
The deep observation of G337.2−0.7 was made on 2012
September 2–11 (Observation ID = 507068010) with the
X-ray Imaging Spectrometer (XIS: Koyama et al. 2007) on
the focal planes of the X-ray telescope (XRT: Serlemitsos
et al. 2007) on board Suzaku. We use the HEADAS soft-
ware at version 6.13. The calibration database released in
2013 March is used for data processing. The effective expo-
sure time is 304.1 ks after the data screening with the stan-
dard criteria recommended by the Suzaku team. The XIS
has three front-illuminated CCDs (XIS 0, 2, and 3) and
one back-illuminated CCD (XIS 1), while XIS 2 and a part
of XIS 0 have not been functioning since 2006 November
and 2009 June, respectively (T. Dotani et al. 2007;

M. Tsujimoto et al. 2010).1 Thus we used the remaining
XIS data. The data in the energy band around the neutral
Si K-edge (1.70–1.80 keV) are ignored because of the cur-
rent calibration error.

3 Analysis
For the spectral analysis, we use the XSPEC software ver-
sion 12.8.1 (Arnaud 1996). From all the X-ray spectra,
we subtract the non–X-ray background (NXB) made by
xisnxbgen (Tawa et al. 2008). The redistribution matrix
file (RMF) and the ancillary response file (ARF) are made by
xisrmfgen and xissimarfgen, respectively (Ishisaki et al.
2007). XIS 0, 1, and 3 data are simultaneously fitted. We
refer to the abundance table by Anders and Grevesse (1989).

3.1 X-ray images

Figure 1 shows NXB-subtracted X-ray images in the
0.5–2 keV, 2–5 keV, and 5–8 keV energy bands in the full
field of view (FOV) of each XIS. The two corners of each
image, which the 55Fe calibration sources irradiate, were

1 Dotani, T., et al. JX-ISAS-SUZAKU-MEMO-2007-08 ⟨http://www.astro.isas.ac.jp/
suzaku/doc/suzakumemo/suzakumemo-2007-08.pdf⟩; Tsujimoto, M., et al. JX-ISAS-
SUZAKU-MEMO-2010-01 ⟨http://www.astro.isas.ac.jp/suzaku/doc/suzakumemo/
suzakumemo-2010-01.pdf⟩.
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• 視野外からの迷光の検出は難しい



Deep Learning による物体検出
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Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 10

4 parameters (512 ⇥ (4 + 2) ⇥ 9

for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 10

6 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function

For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with

↓ これを応用できないか？

Input = Image

Output = Bounding Box + Label



Deep Learning による物体検出の手法
2013年：R-CNN (Regions with CNN features)  

[https://arxiv.org/abs/1311.2524]

• あらかじめ別アルゴリズム (Selective Search) で領域候補 (region proposal) を多数抽出。


• 領域候補の画像をリサイズしてからCNNにかけて、特徴マップを作成。


• 特徴マップを Support Vector Machine (SVM) でカテゴライズ。


• 物体であると判断した領域候補に対して、linear regression で bounding box のサイズを改訂。


• 問題点：遅い、各ステップを個別に学習させる必要有り。

(SVM)



Deep Learning による物体検出の手法
2015年4月：Fast R-CNN  

[https://arxiv.org/abs/1504.08083]

• Region of Interest (RoI) Pooling：領域候補ごとにCNNにかけるのではなく、画像全体をCNNにかけて
おいて、特徴マップに対して候補領域を射影する。 => 1回のCNN run で済む。


• 特徴抽出、カテゴライズ、bounding box 推定を一つのモデルに統合。=> 学習が容易に。


• 問題点：領域候補検出は依然として別アルゴリズムで、ここが速度のボトルネック。



Deep Learning による物体検出の手法
2015年6月：Faster R-CNN  

[https://arxiv.org/abs/1506.01497]

• Region Propsal Network：CNNの出力を領域候補の抽出にも使用することで、
全プロセスを一つのニューラルネットに統合。
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Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 10

4 parameters (512 ⇥ (4 + 2) ⇥ 9

for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 10

6 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function

For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with



Deep Learning による物体検出の手法
Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollár Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present a conceptually simple, flexible, and general
framework for object instance segmentation. Our approach
efficiently detects objects in an image while simultaneously
generating a high-quality segmentation mask for each in-
stance. The method, called Mask R-CNN, extends Faster
R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recogni-
tion. Mask R-CNN is simple to train and adds only a small
overhead to Faster R-CNN, running at 5 fps. Moreover,
Mask R-CNN is easy to generalize to other tasks, e.g., al-
lowing us to estimate human poses in the same framework.
We show top results in all three tracks of the COCO suite of
challenges, including instance segmentation, bounding-box
object detection, and person keypoint detection. Without
tricks, Mask R-CNN outperforms all existing, single-model
entries on every task, including the COCO 2016 challenge
winners. We hope our simple and effective approach will
serve as a solid baseline and help ease future research in
instance-level recognition. Code will be made available.

1. Introduction
The vision community has rapidly improved object de-

tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [12, 34] and Fully Convolutional Network (FCN) [29]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-
ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic
segmentation, where the goal is to classify each pixel into

RoIAlignRoIAlign

class
box

convconv convconv

Figure 1. The Mask R-CNN framework for instance segmentation.

a fixed set of categories without differentiating object in-
stances.1 Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[34] by adding a branch for predicting segmentation masks
on each Region of Interest (RoI), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each RoI, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-
CNN was not designed for pixel-to-pixel alignment be-
tween network inputs and outputs. This is most evident in
how RoIPool [18, 12], the de facto core operation for at-
tending to instances, performs coarse spatial quantization
for feature extraction. To fix the misalignment, we pro-
pose a simple, quantization-free layer, called RoIAlign, that
faithfully preserves exact spatial locations. Despite being

1Following common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.
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Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [19], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

a seemingly minor change, RoIAlign has a large impact: it
improves mask accuracy by relative 10% to 50%, showing
bigger gains under stricter localization metrics. Second, we
found it essential to decouple mask and class prediction: we
predict a binary mask for each class independently, without
competition among classes, and rely on the network’s RoI
classification branch to predict the category. In contrast,
FCNs usually perform per-pixel multi-class categorization,
which couples segmentation and classification, and based
on our experiments works poorly for instance segmentation.

Without bells and whistles, Mask R-CNN surpasses all
previous state-of-the-art single-model results on the COCO
instance segmentation task [28], including the heavily-
engineered entries from the 2016 competition winner. As
a by-product, our method also excels on the COCO object
detection task. In ablation experiments, we evaluate multi-
ple basic instantiations, which allows us to demonstrate its
robustness and analyze the effects of core factors.

Our models can run at about 200ms per frame on a GPU,
and training on COCO takes one to two days on a single
8-GPU machine. We believe the fast train and test speeds,
together with the framework’s flexibility and accuracy, will
benefit and ease future research on instance segmentation.

Finally, we showcase the generality of our framework
via the task of human pose estimation on the COCO key-
point dataset [28]. By viewing each keypoint as a one-hot
binary mask, with minimal modification Mask R-CNN can
be applied to detect instance-specific poses. Without tricks,
Mask R-CNN surpasses the winner of the 2016 COCO key-
point competition, and at the same time runs at 5 fps. Mask
R-CNN, therefore, can be seen more broadly as a flexible
framework for instance-level recognition and can be readily
extended to more complex tasks.

We will release code to facilitate future research.

2. Related Work
R-CNN: The Region-based CNN (R-CNN) approach [13]
to bounding-box object detection is to attend to a manage-
able number of candidate object regions [38, 20] and evalu-
ate convolutional networks [25, 24] independently on each
RoI. R-CNN was extended [18, 12] to allow attending to
RoIs on feature maps using RoIPool, leading to fast speed
and better accuracy. Faster R-CNN [34] advanced this
stream by learning the attention mechanism with a Region
Proposal Network (RPN). Faster R-CNN is flexible and ro-
bust to many follow-up improvements (e.g., [35, 27, 21]),
and is the current leading framework in several benchmarks.

Instance Segmentation: Driven by the effectiveness of R-
CNN, many approaches to instance segmentation are based
on segment proposals. Earlier methods [13, 15, 16, 9] re-
sorted to bottom-up segments [38, 2]. DeepMask [32] and
following works [33, 8] learn to propose segment candi-
dates, which are then classified by Fast R-CNN. In these
methods, segmentation precedes recognition, which is slow
and less accurate. Likewise, Dai et al. [10] proposed a com-
plex multiple-stage cascade that predicts segment proposals
from bounding-box proposals, followed by classification.
Instead, our method is based on parallel prediction of masks
and class labels, which is simpler and more flexible.

Most recently, Li et al. [26] combined the segment pro-
posal system in [8] and object detection system in [11] for
“fully convolutional instance segmentation” (FCIS). The
common idea in [8, 11, 26] is to predict a set of position-
sensitive output channels fully convolutionally. These
channels simultaneously address object classes, boxes, and
masks, making the system fast. But FCIS exhibits system-
atic errors on overlapping instances and creates spurious
edges (Figure 5), showing that it is challenged by the fun-
damental difficulties of segmenting instances.

2

2017年：Mask R-CNN  
[https://arxiv.org/abs/1703.06870]

• classify, box regression の機能と並行して masking 機能を加えることで、
ピクセルレベルで物体境界の識別ができるように。



実際に試してみた

• GitHubから、Faster R-CNNの Keras実装をclone [https://github.com/yhenon/
keras-frcnn]


• すざくの点源画像をシミュレーションで作成 (1000枚)。


‣ 簡単のため、FoV 中に一個の点源のみ。フラックスと位置を乱数で振る。


‣ FITS image を 192 x 192 の png に変換。フラックスに合わせて bounding boxのサイズをスケール


• 上記画像でFaster R-CNNを訓練。同様に作成したシミュレーション画像でテスト

訓練画像 + bounding box 座標 識別テスト

明るい点源はOK！ 暗い点源は検出できず
ランダムに10枚抽出


x 500回

訓練のパラメータを調整すれば、識別率は上がるはず



今後の課題

• FITSイメージを直接入力できるようにする。


• 領域を四角ではなく、円で定義できるようにする。


• 現実的なシミュレーションを行う (バックグラウンド+複数ソース)


• スペクトル情報も持たせたい。(e.g., Soft・Meidum・Hard の識別など)


• 計算環境を整える (CPUだと前ページの訓練ですら丸１日かかる。要GPU)


• X線代替機でpipeline processに組み込めれば、SXIの広視野を生かせるかも？


