23aEA-7

2011.08.23 日本物理学会@富山大学

太陽風多価イオンの電荷交換反応

<u>石田卓也</u>¹,神田拓真¹,島谷紘史¹,赤松弘規¹,榎崇利¹, 石崎欣尚¹,江副祐一郎¹,大橋隆哉¹,大橋隼人², 篠崎慶亮³,満田和久⁴,L.Liu⁵,J.Wang⁵,田沼肇¹

¹首都大理工,²電通大レーザー,³ARD/JAXA,⁴ISAS/JAXA,⁵IAPCM/China

太陽風と太陽系内中性物質との衝突による電荷交換反応 Solar Wind Charge Exchange (SWCX) $A^{q+}+B \rightarrow A^{*(q-1)+}+B^{+}$ \downarrow A = C, O, Ne... $A^{(q-1)+}+hv$

ROSAT衛星による軟X線全天マップ (Snowden et al., 1994)

太陽風と太陽系内中性物質との衝突による電荷交換反応 Solar Wind Charge Exchange (SWCX) $A^{q+} + B \rightarrow A^{*}^{(q-1)+} + B^{+}$ A = C, O, Ne...B = H, He $A^{(q-1)+} + hv$ すざく衛星によるスペクトル (R. Fujimoto et al., 2007) Si(Li)半導体検出器 •O⁶⁺(1s²-1s2p): 574 eV 160 eV@5.9 keV •O⁷+(1s-2p): 654 eV **Normalized counts / s⁻¹ keV⁻¹** $FWHM \sim 100 eV$ Soft x-ray energy /eV 構造分離が不可→高分解能測定が必要 発光断面積データの必要性

太陽風と太陽系内中性物質との衝突による電荷交換反応 Solar Wind Charge Exchange (SWCX) $A^{q+}+B \rightarrow A^{*(q-1)+}+B^{+}$ \downarrow A = C, O, Ne... $A^{(q-1)+}+hv$

 $A = C^{5+}, O^{7+}$ $B = H_2, He, CH_4$

●1電子捕獲断面積 ●等方散乱を仮定した発光断面積

O⁷⁺-**H**₂

Cross Section (cm ²)	Velocity (km/s)	error (%)
5.79 × 10 ⁻¹⁵	919	19
5.53 × 10 ⁻¹⁵	647	21
4.31 × 10 ⁻¹⁵	650	27
	Cross Section (cm ²) 5.79×10^{-15} 5.53×10^{-15} 4.31×10^{-15}	Cross Section (cm ²) Velocity (km/s) 5.79 × 10 ⁻¹⁵ 919 5.53 × 10 ⁻¹⁵ 647 4.31 × 10 ⁻¹⁵ 650

O⁷⁺-**He**

Collision Energy (keV)	Cross Section (cm ²)	Velocity (km/s)	error (%)
70	1.90 × 10 ⁻¹⁵	919	9
63	1.95 × 10 ⁻¹⁵	872	12
56	1.83 × 10 ⁻¹⁵	822	11
49	2.08 × 10 ⁻¹⁵	769	11
35	1.16 × 10 ⁻¹⁵	650	14
21	1.77 × 10 ⁻¹⁵	503	30
10.5	9.92 × 10 ⁻¹⁶	356	18

Collision Energy (keV)	Cross Section (cm ²)	Velocity (km/s)	error (%)
70	9.04 × 10 ⁻¹⁵	919	17
63	7.99 × 10 ⁻¹⁵	872	14
56	8.69 × 10 ⁻¹⁵	822	12
52.5	6.09 × 10 ⁻¹⁵	796	11
35	4.61 × 10 ⁻¹⁵	650	23
28	4.24 × 10 ⁻¹⁵	581	24
21	3.75 × 10 ⁻¹⁶	503	28

O⁷⁺-CH₄ IP: H=CH₄=13.6 eV

Collision Energy (keV)	Cross Section (cm ²)	Velocity (km/s)	error (%)
70	9.04 × 10 ⁻¹⁵	919	17
63	7.99 × 10 ⁻¹⁵	872	14
56	8.69 × 10 ⁻¹⁵	822	12
52.5	6.09 × 10 ⁻¹⁵	796	11
35	4.61 × 10 ⁻¹⁵	650	23
28	4.24 × 10 ⁻¹⁵	581	24
21	3.75 × 10 ⁻¹⁶	503	28

発光断面積

発光断面積

23aEA-7

2011.09.23 日本物理学会@富山大学

O⁶⁺ Schematic Diagram

key	key transition		wavelength (nm)	life time (s)	wavelength (nm)	life time (s)
			NIST		I.M. Savukov et al.	
w	$1s2p P_1 \rightarrow 1s^2 S_0$	E1	2.1602	3.02 × 10 ⁻¹³	2.1600	3.03 × 10 ⁻¹³
х	$1s2p {}^{3}P_{2} \rightarrow 1s^{2} {}^{1}S_{0}$	M2	2.1804	3.02 × 10⁻ ⁶	2.1800	3.02 × 10 ⁻⁶
У	$1s2p {}^{3}P_{1} \rightarrow 1s^{2} {}^{1}S_{0}$	E1	-	-	2.1802	1.87 × 10 ⁻⁹
Z	1s2s ${}^{3}S_{1} \rightarrow 1s^{2} {}^{1}S_{0}$	M1	2.2101	9.56 × 10⁻⁴	2.2097	9.61 × 10 ⁻⁴

23aEA-7

2011.09.23 日本物理学会@富山大学

O⁶⁺ Schematic Diagram

key	key transition		wavelength (nm)	life time (s)	wavelength (nm)	life time (s)
			NIST		I.M. Savukov et al.	
w	$1s2p P_1 \rightarrow 1s^2 S_0$	E1	2.1602	3.02 × 10 ⁻¹³	2.1600	3.03 × 10 ⁻¹³
х	$1s2p {}^{3}P_{2} \rightarrow 1s^{2} {}^{1}S_{0}$	M2	2.1804	3.02 × 10⁻ ⁶	2.1800	3.02 × 10⁻ ⁶
у	$1s2p {}^{3}P_{1} \rightarrow 1s^{2} {}^{1}S_{0}$	E1	-	-	2.1802	1.87 × 10 ⁻⁹
Z	1s2s ${}^{3}S_{1} \rightarrow 1s^{2} {}^{1}S_{0}$	M1	2.2101	9.56 × 10⁻⁴	2.2097	9.61 × 10 ⁻⁴

発光断面積

発光断面積

まとめ

Projectile : C^{5+} , O^{7+} Target : He, H₂, CH₄

●電荷移行断面積の測定 いずれも過去のデータ」理論計算に一致

●発光断面積の測定
 等方散乱を仮定 / ³P₁, ¹P₁の両方が発光

今後
●projectile: C⁶⁺, N⁷⁺, O⁸⁺
●Magic Angle方向(54.7°)からのX線観測 →偏光度に依存しない発光断面積の測定
●X線集光レンズを用いた測定
●準安定状態の発光を観測 →kingdon trapの使用 23aEA-7

 $\sigma[cm^{2}] = \frac{R[/m^{3} \cdot s]}{n[/m^{3}] \cdot J[/cm^{2} \cdot s]}$

励起状態からの発光強度分布 →偏光度に依存しない発光強度

a

n

e

С

a

 $\mathbf{I}(\boldsymbol{\theta}) = \frac{1}{\boldsymbol{\Lambda}\boldsymbol{\pi}} \left[1 + \boldsymbol{\alpha}_2 \boldsymbol{A}_{20} \boldsymbol{P}_2(\boldsymbol{\cos}\boldsymbol{\theta}) \right]$ α₂:角運動量に依存するパラメータ A₂₀: 偏光度に依存するパラメータ

$P_2(\cos\theta) = 0 \Leftrightarrow 3\cos^2\theta - 1 = 0$

 $\theta = 54.736^{\circ}$

~Kingdon Trap~

feature without the use of either magnetic fields or rf fields O no potential minimum it consists of three electrodes • central wire outer cylinder two end caps O dynamical stability

Polycapillary Optics FOR MICRO X-RAY FLUORESCENCEAND X-RAY DIFFRACTION

Polycapillary Optics FOR MICRO X-RAY FLUORESCENCEAND X-RAY DIFFRACTION

(Base case of 300um pinhole 250mm away from a 500um input source) RIKEN Optic

Gain vs. Energy (keV) (Base case of 300um piphole 250mm away from a 500um input sour

Polycapillary Optics FOR MICRO X-RAY FLUORESCENCEAND X-RAY DIFFRACTION Gain vs. Energy (keV) (Base case of 300um pinhole 250mm away from a 500um input source) **RIKEN** Optic o ° o ° ° ° ° ° ° ° Ø Gain ° 0.5 1.5 Energy (keV)

Polycapillary Optics FOR MICRO X-RAY FLUORESCENCEAND X-RAY DIFFRACTION Gain vs. Energy (keV) (Base case of 300um pinhole 250mm away from a 500um input source) **RIKEN** Optic ° ° ° ° ° ° ° ° ° Ø Gain ° 0.5 1.5 Energy (keV)

23aEA-7

3P

状態からの発

