Soft X-ray emissions related to the solar wind charge exchange observed by the X-ray satellite observatories

<u>T. Ishida*</u>, T. Kanda*, H. Akamatsu*, T. Enoki*, K. Henmi*, Y. Ishisaki*, Y. Ezoe*, T. Ohashi^{*}, K. Shinozaki[†], K. Mitsuda[‡] H. Ohashi^{**}, L. Liu^{††}, J. Wang^{††}, H. Tanuma^{*}

*Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan **Institute of Laser Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan [†]Aerospace Research and Development Directorate, JAXA, Tsukuba, Ibaraki 305-8505, Japan [‡]Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210, Japan ⁺⁺Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088, China

> We have observed the emission spectra in collisions of bare and hydrogen-like C and O ions with helium atoms and hydrogen molecules in the soft X-ray region using a window-less Si(Li) detector at collision energies around 100 keV. It is found that the 1s-2p emission is dominant in each spectrum. We indicate that the cascade from the upper states give the large population of the 2p state after the consideration using state-selective capture cross sections calculated by the TC-AOCC method.

Introduction

Discussion

The soft X-ray emission from the comets and the soft X-ray background signals observed with the X-ray satellite observatory have been understood as the transitions of the highly charged ions in the solar wind which underwent charge-exchange collisions with neutral gases in the heliosphere. To analyze future observed X-ray satellite spectra using high resolution micro calorimeter, it is necessary to know cross sections for charge exchanges.

tion

dependence

on energy : small on target : significant

state-selective emission O^{8+} -He : 1s-3p < 1s-4p < 1s-2p C⁶⁺-He : 1s-4p < 1s-3p < 1s-2p

FWHM : 107 eV

previous works

O⁸⁺-H₂, He 56 keV

$A^{(q-1)+} + hv$

The energy resolution of the detector on the present X-ray satellite is not sufficient to distinguish fine structures. So, High resolution X-ray detector is required to identify emission. We are planning experiment using high resolution, Transition Edge Sensor (TES) micro calorimeter.

Experimental Setup

Gas jet method The highly charged ions produced with a 14.25 GHz ECR ion source were fed into a collision chamber after the charge-state selection. Soft X-ray emission following the collisions of highly charged O and C ions with He and H₂ target gases was observed at 90° to the ion beam direction with a window-less Si(Li) detector.

cascade model

stion

The relative intensities of 1s-2p, 1s-3p, and 1s-4p have been reproduced with the cascade model using the state-selective capture cross sections calculated by the TC-AOCC method.

normal

conductivity

 $\log T$

Transition Edge Sensor X-ray micro-calorimeter

Gas cell method

Results

emission spectra

collision energy and target dependences

TES calorimeter has enough resolution (< 10 eV) to distinguish each emission line.

Magic Angle

We will observe soft X-ray emission at the magic angle to the ion beam direction to obtain the absolute photon intensity without the influence of the polarization.

54.7

X-ray

ion beam

It's possible to measure the absolute target gas pressure. So, this set up have been designed to measure charge transfer cross sections by an attenuation method.

