21pTC-12

Si(Li)検出器による多価イオンの電荷交換分光

¹首都大理工, ²JAXA, ³ISAS/JAXA

神田拓真¹, 大橋隼人¹, 前野修平¹, 石田卓也¹, 田沼肇¹, 赤松弘規¹, 阿部祐輝¹, 横田渉¹, 辺見香理¹, 石崎欣尚¹, 江副祐一郎¹, 大橋隆哉¹, 篠崎慶亮², 満田和久³

「ROSAT」衛星による軟X線全天マップ

■謎の強度変動が観測された
■太陽風と中性ガスの電荷交換反応による発光

◆太陽風(地球近傍)

- 成分: e⁻; H⁺:90%, He²⁺:5%, C^{q+}, N^{q+}, O^{q+}, ···
- ■速度,密度:300~400 km/s (<mark>約0.6 keV/u</mark>),

3 個/cm³(約0.01 nA/cm²) 700~800 km/s (約3 keV/u),

9 個/cm³(約0.3nA/cm²)

■地球近傍では45度で入射

4

2010/3/21

- ◆宇宙実験研究室@TMUで TES型X線マイクロカロリメータを開発中
- ◆ ΔE= 2.8 eV @ 5.9 keV を達成

- ◆宇宙実験研究室@TMUの目的 ■TES型X線マイクロカロリメータの地上実験
- ◆原子物理実験研究室の目的 ■HとO⁷⁺で起きている電荷交換反応の理解

TES型X線マイクロカロリメータで O⁷⁺ - Hによる発光の測定 O⁷⁺(1s)+H→O⁶⁺(1snl)+H⁺ \downarrow O⁶⁺(1s²)+hv

予備実験 O⁷⁺, N⁶⁺ -He by Si(Li)

7

2010/3/21

◆O⁷⁺,N⁶⁺ -Heの電荷交換分光

■衝突エネルギーによらず2pからの発光が観測された

■3pからの弱い発光

◆TES型X線マイクロカロリメータで検出可であることを確認

■TES (0.04mm²):2 cps (予想)

◆今後の予定

■水素原子源の導入(購入済み)

■入射イオンを太陽風の速度に近づける(200~300km/s(<mark>3~7keV</mark>))

■TES型X線マイクロカロリメータ@宇宙実験で測定

Si(Li)

東 俊行, 中野 祐司 目時 健一

AOCC

Ling LIU (IAPCM, Beijing) Jianguo WANG (IAPCM, Beijing)

2010/3/21

