

超伝導転移端(TES)型 X線マイクロカロリメータによる 宇宙観測と地上応用

満田和久

宇宙航空研究開発機構・宇宙科学研究本部 (ISAS/JAXA)

the TES µ-calorimeter ISAS/JAXA-首都大-早稲田大-SIINT collaborationを代表して

超伝導科学技術研究会 第66回ワークショップ、2007年3月7日 @化学会館、お茶の水

概要

● X線撮像と精密分光を両立する観測によって、高エネルギー 宇宙観測の新しい扉を開きたい。 ● 暗黒バリオンと宇宙の大構造の直接測定 ● 宇宙の大構造の形成と進化過程の直接検出 ● 宇宙の原子核合成の現場を直接検証 ● TES型マクロカロリメータアレイを開発 ● 軟X線用、硬X線用TES マイクロカロリメータ ● 極低温信号多重化によるアレイ読み出し ● TES型マクロカロリメータの地上応用 (宇宙観測は実現までに時間がかかる。。) ● 地上プラズマ診断 (=実験室宇宙物理学への第ーステップ) ■ X線微量分析

宇宙の物質/エネルギー組成

銀河団

X線:約1億度の高温物質

可視光:銀河

おとめ座銀河団

高温ガスからのX線

宇宙の高温ガスから予想される典型的なX線スペクトル

暗黒バリオンを捉え、それが描き出す 暗黒物質の分布を精密に測定する

微弱な輝線を検出し、距離を決定するた めにTES型µカロリメータが不可欠

宇宙の構造進化

7

水素ヘリウム以外の元素は星の中で作られた

カシオペア-A内の運動の測定 エネルギー範囲: 10 -100 keV エネルギー分解能: 20eV アレイ: ≥ 6 x 6 全面積: ≥1 cm² 銀河中心領域のサーベイ エネルギー範囲: 10 -100 keV エネルギー分解能: 20eV アレイ: ≥ 16 x 16 全面積: ≥1 cm²

⁴⁴Tiからのガンマ線 (67.9, 78.4 keV)

超新星爆発の内部構造の理解の鍵 我々の銀河系内の最近 (~数100 年)の超 新星爆発の診断

気球観測: カシオペア-Aからの ⁴⁴Ti γ線観測

400kgの小型衛星 ダークバリオンの検出と、 それが描き出す暗黒物質 の3次元構造の測定をめざ す。TESµカロリメータは ダークバリオンからの微弱 な信号検出に不可欠。

国際協力大型計画

2020

有効面積100 m² の巨大なX線望遠鏡 を2台の衛星で実現。宇宙初期の天体 からのX線を分光する。

1.7トン中型衛星
宇宙の大規模構造形成とそれに伴う粒子加速の解明を
めざす。TESµカロリメータは運動測定をめざす。

XEUS

X線の集光と結像

<1度程度の斜 入射による金 属表面での全 反射を利用

すざく衛星の反射鏡		
	XRT-S	XRT-I
焦点距離	4.5m	4.75m
直径	40cm	39.9cm
ネスト数	168	175
反射面	金	金
重量	18kg	18kg

TES型µカロリメータによる分光

μカロリメータ 高分解能(E/ΔE=100-1000) 1に近い検出効率 アレイ化により撮像と両立可能 TES型

高感度温度計で、より高いエネル ギー分解能と高速応答

Kurabayashi et al. 2007

エネルギー分解能を決めている要因

角に入射

中心に入射

(X線入射から10µ秒までのmovie)

"超過"雑音の性質

マッシュルーム型ビスマス吸収つき16x16 軟X線用アレイ

Kudo et al. 2004, Satoh et al. 2005

TES µカロリメータ開発 (3)

SAS

動作温度100 mK SIINT製軟X線用素子に錫 の吸収体を装着

> 検出効率 80%@60keV

PHA (a.u.)

Residual (eV)

8-画素多重化に向けて

新規に開発した8入力SQUID

Yamasaki et al. 2006

地上応用(1) 地上プラズマの診断

Soft X-ray TES (inside Dewar)

- 産総研 逆ピンチプラズマ装置 (筑波)
- 重水素プラズマ
 - 温度(kT)=約600 eV
 - 密度 x 持続時間 =10¹¹-10¹² cm⁻³ sec
- TESで測定する目的
 - 不純物濃度の測定
 - 電子温度の決定

宇宙のプラズマに近い状態

kT=75eV, 330eV, 800 eV, 1.02 keV, Γ =1.7

asis

Shinozaki et al. 2006

- コンデンサーバンクを放電する際の巨大な電磁干渉によりエネル ギー分解能は50eVまで悪化してしまった。
- それでも、プラズマの電子温度が多温度であること、炭素と鉄の 存在量を決定。

as as

物質・材料研究機構、SIINT、JAXA、九州大学、日本電子

まとめ

● X線撮像と精密分光を両立する観測は、高エネルギー宇 宙観測の新しい扉を開く。 ● 暗黒バリオンと宇宙の大構造の直接測定 ● 宇宙の大構造の形成と進化過程の直接検出 ● 宇宙の原子核合成の現場を直接検証 ● TES型µカロリメータアレイを開発 ● 軟X線用、硬X線用TESµカロリメータ ● 世界最高レベルの4.8eV@5.9keV、38eV@60keVのエネルギー分解能、 256画素アレイを製作 ● 極低温信号多重化によるアレイ読み出し 8入力型SQUIDによる周波数分割信号多重化 ● TES型µカロリメータの地上応用 ● 地上プラズマ診断 (=実験室宇宙物理学への第ーステップ) ● X線微量分析